

Object-Oriented Programming
in ColdFusion

Break free from procedural programming and learn how
to optimize your applications and enhance your skills
using objects and design patterns

Matt Gifford

BIRMINGHAM - MUMBAI

Object-Oriented Programming in ColdFusion

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1081010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-32-3

www.packtpub.com

Cover Image by Filippo (filosarti@tiscali.it)

Credits

Author
Matt Gifford

Reviewer
Raymond Camden

Acquisition Editor
David Barnes

Development Editor
Dhiraj Chandiramani

Rakesh Shejwal

Technical Editor
Arun Nadar

Copy Editor
Laxmi Subramanian

Indexer
Rekha Nair

Editorial Team Leader
Aditya Belpathak

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Lynda Sliwoski

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

ColdFusion Components (or CFCs) were introduced in ColdFusion MX back in
2002, and since then they have become one of the most important and fundamental
building blocks for ColdFusion developers. In fact, recent releases of ColdFusion
have made CFC use mandatory, by introducing features that are only available
through ColdFusion Components.

As you'd expect from ColdFusion, CFCs are easy to learn and even easier to use. But
the beautiful simplicity of ColdFusion Components hides a powerful, sophisticated,
and proven Java-based framework on which developers can build highly scalable
and manageable applications. Like all ColdFusion features, CFCs can be as simple or
as sophisticated as your application requires, and developers can start reaping their
benefits easily and painlessly, adding functionality and complexity later as needed.

But this duel personality, highly accessible simplicity on the one hand and all that
power on the other, has proven to be a bit of a double-edged sword. The same ease
of use that makes ColdFusion so easy to learn and so productive, also makes it too
easy to never fully explore and leverage all that ColdFusion has to offer.

This is why I am so glad to see Matt Gifford's hard work take the form of this book.
Matt starts with the basics of ColdFusion Components, but then quickly delves
into the subtleties and complexities of using them for object-oriented development,
demonstrating both the how's and why's, as well as the tips and tricks needed to
truly appreciate how ColdFusion Components can (and should) change the way you
build your next ColdFusion application.

Matt, this book is long overdue, and your contribution to the ColdFusion community
is greatly appreciated. Thanks!

Ben Forta

Director of Platform Evangelism

Adobe Systems

When you start using ColdFusion components, you know that you're on the right
track; you can feel this change at some core, instinctual level—as if you're about to
embrace something that holds tremendous, yet untapped potential. Unfortunately,
your instincts won't take you much further beyond this point. The cold reality is,
Object-Oriented Programming (OOP), when used incorrectly, is a destructive force
that can leave your code tightly coupled, brittle, and nearly impossible to maintain.

And yet, wave after wave of graduating computer scientists come to hail OOP as
the only way to build robust and durable software. Now, this is not proof of a poor
educational system; rather, it is a testament to the tried and true benefits of an object-
oriented approach to software development. This commitment to OOP reinforces
those instinctual feelings we experience as we type out the code "CFComponent"—
we are on the right path to good development practice.

With great power comes great responsibility, and Object-Oriented Programming is a
powerful tool. By reading this book and choosing to further your understanding of
OOP, you are demonstrating great responsibility! Learning OOP the right way is the
only responsible choice that you can make for yourself and for your clients.

Ben Nadel

Chief Software Engineer

Epicenter Consulting

To go Object-Oriented or to not go Object-Oriented (OO) is still the source of some
of the most heated discussions in the ColdFusion world. The simple truth is that
the rest of the programming world had this fight 10 years ago—and OO won. As
a result of the wider industry's move towards OO, the ColdFusion community has
also embraced this methodology; this has been done by adapting frameworks and
patterns from other languages. The product teams at Adobe have adopted OO by
introducing ColdFusion Components and Object Relational Mapping to the list of
features within and available to ColdFusion.

Where does that leave the average ColdFusion developer, those people who don't
have time to learn every new tag and function added to ColdFusion with each
release? They're too busy working for a living, which makes finding the time and
resources for ongoing professional development a real challenge.

Often it leaves these ColdFusion developers with no starting point, no easy onramp,
to "get their OO on". This is a shame, and somewhat of an irony, as OO can be a
highway to productivity. However, without a guide, exploring OO can be like
travelling down a forested dirt road in the middle of the night. You can easily go off
track.

That's why I was thrilled to hear that Matt Gifford had agreed to write the book
you have in your hands. Matt is one of those hard to find technical minds that
can communicate as well as he codes. I can think of no one better to help you
navigate the sometimes tough, but always rewarding road that is Object-Oriented
programming.

Terry Ryan

ColdFusion Evangelist

Adobe Systems

About the Author

Matt Gifford like many developers began his career teaching himself the basics of
software development. Starting with simple applications using BASIC Programming
on his Sinclair ZX Spectrum, he moved to creating relational databases in VBScript
and hand-coding HTML pages in text editors. From at-home 'hobby' programming,
Matt moved into the world of professional development in 2000 before getting a
role as a web developer with the UNEP, where he was trained in ColdFusion. Matt
later moved to agency and contract roles in London, where he also picked up new
languages including Adobe Flex and AIR.

Now as a Lead Developer with Fuzzy Orange Ltd, Matt continues to specialize
in ColdFusion, Flex, and AIR development. He presents regularly at national and
international conferences and online meetings, and has written tutorials and articles
for online resources and leading UK industry magazines.

As an Adobe Community Professional for ColdFusion, Matt is a keen proponent for
community resources and sharing knowledge. He regularly writes and releases open
source ColdFusion applications and code samples, which he shares through his blog,
www.mattgifford.co.uk, as well as supporting the community online in forums
and social media.

Acknowledgement

No publication or piece of work is ever the product of one individual, and these are
just some of the people I need to thank.

Thank you to Douglas Paterson, Leena Purkait, and the Packt Publishing team who
have helped guide me through all the challenges of writing my first book.

I would like to thank Ray Camden and Ben Nadel for technically reviewing this
publication in various states and for providing suggestions and ideas from day one
of this project.

Massive thanks goes out to John Whish, who shared his time so that we could
discuss paradigms, patterns, and the intricacies of using cars as code examples.

Of course, thank you to the ColdFusion product team and to Adobe, for continuing
to improve an already amazing product, and to the entire ColdFusion community,
which justly deserves the reputation as being a supportive and committed group of
professionals.

Finally, thank you to my amazing wife Cate who has supported me throughout this
process, with patience, advice, and encouragement.

About the Reviewer

Raymond Camden is a software consultant focusing on ColdFusion and RIA
development. A long time ColdFusion user, Raymond has worked on numerous
ColdFusion books including the ColdFusion Web Application Construction
Kit and has contributed to the Fusion Authority Quarterly Update and the
ColdFusion Developers Journal. He also presents at conferences and contributes
to online webzines. He founded many community websites including CFLib.org,
ColdFusionPortal.org, and ColdFusionCookbook.org and is the author of open
source applications, including the popular BlogCFC (www.blogcfc.com) blogging
application. Raymond can be reached at his blog (www.coldfusionjedi.com) or
through e-mail at ray@camdenfamily.com. He is the happily married proud father of
three kids and is somewhat of a Star Wars nut.

Table of Contents
Preface	 1
Chapter 1: Introducing ColdFusion Components	 7

Why use CFCs?	 8
Grouping your functions	 9
Organizing your components	 9

The ColdFusion component tags	 10
Our first component	 10

Defining a method	 11
Returning the data	 11

ColdFusion 9 scripted components	 12
Creating your object	 12

Restricting your functions to scopes	 13
Using arguments within your methods	 14
The Arguments scope	 14
Redefine the function parameters	 15
Combining your methods	 16

Protecting your local variables	 17
Using the Var scope	 20

Placing your Var scoped variables	 21
Naming your Var scoped variables	 21

Accessing your CFC	 22
Instantiating the object	 22

Using the createObject function	 22
Using the cfobject tag	 23
Using the NEW operator	 23

Using cfinvoke	 23
The cfinvoke tag	 24
Using cfinvokeargument	 24
Using attributes as arguments	 24
Using an argument collection	 25

Table of Contents

[ii]

Passing arguments into an instance method call	 25
As a list	 25
As named values	 26
As an argumentCollection	 26

Arguments in action	 26
Merging your functions into one	 26
Using cfargument to combine your methods	 27

Creating an object constructor	 29
Creating an init() function	 30
The Variables scope	 31
Calling your init() function	 32
The This scope	 32

Summary	 35
Chapter 2: Effective Component Development	 37

Pseudo-constructors	 37
Using the pseudo method	 38
Suppressing whitespace	 39

Output attribute	 40
Pseudo-constructor or init() method	 41

Returning values and variables	 42
returnType	 42

Access properties	 45
Private	 46
Package	 47
Public	 47
Remote	 47

Getting information about your CFC	 47
Introspection	 48

CFC Explorer	 48
Component Doc	 49

Document your code	 50
Benefits of documentation	 50
Displayname attribute	 50
Hint attribute	 50
Description attribute	 51
User-defined metadata	 51

Obtaining CFC metadata	 52
getMetaData	 52
getComponentMetaData	 54
Returning metadata	 55

Detailed introspection	 56
Summary	 57

Table of Contents

[iii]

Chapter 3: Building Your First Bean	 59
What is a Bean?	 59

But what is it really?	 60
The benefit of using beans	 62
Creating our first Bean	 63

An introduction to UML	 63
Person object in UML	 64

What makes a Bean a Bean	 66
A default/no-argument constructor	 66
Easily accessible for introspection	 67

Completing our Projects Bean	 68
Calling our project Bean	 72

Populating the Bean	 73
Read/Write Bean	 74
Read-only Bean	 76

Helpful objects	 77
Implicit accessors	 82
Summary	 86

Chapter 4: Inheritance and Object-Oriented Concepts	 87
What is Inheritance?	 87

Avoiding code duplication	 90
Inheriting our products	 91
The Super keyword	 95

Overriding methods	 95
Instantiating our products	 96

The inheritance hierarchy	 98
Specialization	 98
The "IS A" relationship	 99

Polymorphism	 99
Composition	 100

The "HAS A" Relationship	 100
Implied ownership	 103

Aggregation	 103
Summary	 109

Chapter 5: Data Access Objects	 111
What is a Data Access Object?	 111
Creating a Data Access Object	 112

The create method	 116
Storing a new user	 118

The read method	 121
Handling select results	 122

The update method	 123

Table of Contents

[iv]

The delete method	 128
An alternative save method	 129

The save method	 129
The exists method	 130
Caching the Data Access Objects	 132

Dependency Injection	 133
Summary	 134

Chapter 6: Gateways	 135
What is a Gateway?	 136
A typical ColdFusion Gateway	 136

Creating a Gateway object	 138
Naming conventions	 138

Adding gateway methods	 140
Minimising code duplication	 143

Revising the gateway object	 144
Caching the Gateway object	 147

The Gateway discussion	 148
No hard and fast rules	 148
Table Data Gateway	 148

Similarities to Data Access Objects	 149
Combining the two patterns	 150

Which option is best?	 151
Summary	 152

Chapter 7: Creating a Service Layer	 153
What is a Service Layer?	 154

Facade patterns in a nutshell	 155
Creating a service	 155

Defining the User Service	 157
Adding the CRUD methods	 158
Adding the Gateway methods	 160

Adding an abstract class	 162
Defining the address service	 163

onApplicationStart (revisited)	 166
Summary	 167

Index	 169

Preface
The principles and fundamental elements of Object-Oriented Programming (OOP)
are not new to the development world, although for some, there is a hesitancy to
engage with OOP as it can be perceived as a confusing or unnecessary method
of development.

As you read Object-Oriented Programming in ColdFusion, you will be guided through
the core structure of ColdFusion Components, the foundation of OOP in CFML-
based applications, and an introduction to some common design patterns and
principles used in object-oriented development.

This book deals with the basic fundamental practices of OOP, including object
creation and reuse, Bean objects, service layers, Data Access Objects, and simple
design patterns. This is intended to help the reader gain a better understanding of
OOP using examples that can be altered and applied into any application.

Object-Oriented Programming in ColdFusion aims to simplify the understanding of
OOP, and dispense with unnecessary jargon and complex diagrams. By taking
this more direct approach, this book aims to assist the reader in understanding the
principles of OOP, how to implement them into their ColdFusion applications,
and help the user extend their development skills in the process.

Using the practical examples within this easy-to-follow guide, you will learn how to
structure your applications and code, and apply the fundamental basics of OOP to
develop modular and reusable components that will scale easily with your application.
This is ideal for any ColdFusion developer looking to break free from writing purely
procedural code, and extend and advance their development practices.

Preface

[2]

Who this book is for
If you are a web developer wanting to implement object-oriented programming with
ColdFusion, then this book is for you. If your goal is to get a good grounding in the
basics of the object-oriented programming concepts, this book is perfect for you. No
prior knowledge of object-oriented programming is expected, but basic knowledge
of ColdFusion development skills is assumed.

What this book covers
Chapter 1, Introducing ColdFusion Components outlines the basic elements of
ColdFusion Components. The reader is guided through the structure of a CFC,
arguments, parameters, and encapsulating information.

Chapter 2, Effective Component Development highlights some important attributes and
techniques to optimize your component's output. We also investigate introspecting a
component as well as providing and reading metadata.

Chapter 3, Building Your First Bean begins the reader's journey into object-oriented
development. This chapter focuses on a Bean object, understanding requirements
and benefits for using one, and how to set and access properties within the Bean.

Chapter 4, Inheritance and Object-Oriented Concepts starts to explore the world of
object-oriented programming in a little more detail. This chapter also introduces
some key concepts such as polymorphism and composition.

Chapter 5, Data Access Objects looks at the use of Data Access Objects to access
and obtain information from a data source. We'll also look at persisting objects in
memory throughout your application.

Chapter 6, Gateways introduces an optional data access method for use in your object-
oriented development, and also highlights some extra benefits of code separation to
help enable easier code management within your applications.

Chapter 7, Creating a Service Layer introduces the use of facade objects to your
application's underlying API / component structure. We also explore object
inheritance and options to streamline the existing code within your framework.

What you need for this book
To get the most out of this publication, you will require version 8 or 9 of the
ColdFusion server. You will also need a SQL database such as SQL server or MySQL
to create a database to run the code examples.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Let's take a look at the
onApplicatonStart() method as it currently stands within the
Application.cfc file."

A block of code is set as follows:

<cfscript>
objProjects = createObject("component", "com.projects.Projects");
</cfscript>
<cfoutput>
The current date is #objProjects.getCurrentDate()#
</cfoutput>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<cffunction name="getAllUsers" access="public" output="false"
 hint="I run a query of all users within the database table.">
 <!--- Call the query method from the User Gateway and return the
 query object. --->
 <cfreturn variables.instance.userGW.filterAllUsers() />
</cffunction>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing ColdFusion
Components

ColdFusion Components, commonly known as CFCs, were introduced in
ColdFusion MX. In essence, they are simple templates written in existing CFML tags
and CFScript. As such, they are not complex, confusing, or difficult to understand. If
you can code CFML, you can create CFCs.

In this chapter, we will cover the following:

•	 The basic structure of a ColdFusion component
•	 The component tags, functions, and methods
•	 Passing parameters using the argument scope

For those with any experience with ColdFusion, components should be relatively
commonplace. Object-Oriented Programming (OOP) relies heavily on the use of
ColdFusion components, so before proceeding onto the ins and outs of OOP, let's
re-familiarize ourselves with components within ColdFusion. This introduction will
also serve as a reference when looking at subjects later in the book.

ColdFusion Components use the same ColdFusion Markup Language (CFML) as
'standard' ColdFusion pages. The core difference is the file extension—components
must be saved with a .cfc file extension as opposed to the .cfm file extensions for
template pages.

The basic structure of a ColdFusion Component is:

•	 The component (the page within which you create the code to hold data or
perform functions)

•	 The methods available to run within the CFC, also known as functions

Introducing ColdFusion Components

[8]

In simple terms, CFCs themselves form a framework within ColdFusion, allowing
you to write structured, clear, and organized code. They make application
development easier to manage, control, and maintain.

ColdFusion Components use the same CFML as 'standard' ColdFusion
pages. The core difference is the file extension.

Why use CFCs?
It is not unusual for applications to grow and seem overly complex. Pages containing
detailed information, such as business logic, data access and manipulation, data
validation, and layout/presentation logic, can become untidy and hard to manage.

Creating and developing applications using CFCs enables you to separate the code
logic from the design and presentation, and build an application based around, if not
using, traditional Model View Controller (MVC) framework methodologies.

Utilizing CFCs and creating a clear structured format for your code will help reduce
the complexity of logic within your pages and improve the application speed.
Having a clearly structured, well organized code base will make it easier to develop
as an individual and share resources within a team. This is the instant benefit of CFC
development.

A well-written CFC will allow you to reuse your functions, or methods, across your
entire application, helping to reduce the risk of code duplication. It will keep your
component libraries and code base to a more easily manageable size, preventing it
from becoming convoluted and difficult to follow.

ColdFusion components are an incredibly powerful and valuable means of creating
efficient code. They allow you to:

•	 Share properties and variables between other methods and functions
•	 Share and interact with functions contained within other CFCs
•	 Inherit the properties and methods of a base component
•	 Overwrite methods and functions within other components

CFCs also give you the ability to clearly document and comment your code, letting
you and other developers know what each function and property should do, what
it should be expecting to receive to do the job and what output it will give you.
ColdFusion components are able to read themselves and display this data to you,
using a form of introspection, which we will cover in Chapter 2.

Chapter 1

[9]

Although CFCs are an effective tool for code reuse, this is not to say they should be
used for every reusable function within your application. They are not a complete
replacement for custom tags and user-defined functions.

When you load a CFC (instantiate the component), this uses up more processing
time than it would to call a custom tag or a User-Defined Function (UDF) into use.
Once a CFC has been instantiated, however, calling a method or function within the
component will take approximately the same time as it would to call a UDF.

It is important, therefore, that CFCs should not necessarily be used as a complete
replacement for any UDFs or custom tags that you have in your application. Any
code you write can, of course, be optimized, and changes can be made as you learn
new things, but UDFs and custom tags perform perfectly well. Using them as they
are will help to keep any processing overheads on your application to a minimum.

Grouping your functions
You may have already written custom tags and user-defined functions that allow
similar functionality and reusability, for example, a series of UDFs that interact with
a shopping cart. By grouping your functions within specific components according
to their use and purpose, you can successfully keep your code library organized and
more efficient.

You can also further clean your code library by compiling or grouping multiple
related components into a package, clearly named and stored in a directory within
your application.

Organizing your components
A typical method for organizing your CFC library is to create a directory structure
based on your company or domain name, followed by a directory whose
name references the purpose of the included components, for example, 'com.
coldfumonkeh.projecttracker' in the webroot of your application.

Within this directory, you would then create a directory for each group (or package), of
components, with a name reflecting or matching the component name and purpose.

Introducing ColdFusion Components

[10]

Use your ColdFusion Components to create a component structure, or a library,
that contains grouped methods and functions, particularly if the methods share
properties or data.

The ColdFusion component tags
You can use these following tags to create a ColdFusion Component.

Tag Purpose
cfcomponent The core CFC tag that defines the component structure. All other

content in the component is wrapped within this tag.
cffunction Creates a method (function) within the component.
cfargument Creates a parameter, otherwise known as an argument, to be sent to

the function.
cfproperty Can be used to define and document the properties within your

component. Can also be used to define variables within a CFC that is
used as a web service.

These previously mentioned tags are written within the .cfc file that defines the
ColdFusion component.

In the world of object-oriented programming, you will commonly hear or see
reference to the word 'Class'. A class is essentially a blueprint that is used to
instantiate an object, and typically contains methods and instance variables.
When discussing a Class in the context of ColdFusion development, we are
basically referencing a ColdFusion component, so when you see or read
about classes, remember it is essentially an alias for a CFC.

Our first component
To get started, in this example, we will create a component and functions to output
the message "Hello world".

Create a new file called greetings.cfc and save it within your ColdFusion webroot.

The following is a component base tag; add this code into the new CFC to define the
component:

<cfcomponent displayName="greetings">
</cfcomponent>

Listing 1.1 – component base tags

Chapter 1

[11]

As you can see, the name attribute within the CFC matches the name of the file. The
cfcomponent tags form the base structure of our ColdFusion Component. No other
code can be placed outside of these tags, as it will simply display an error.

It may be helpful to think of the cfcomponent tag as the wrapping paper on a parcel.
It forms the outer shell of the package, holding everything else nicely in place.

Defining a method
We have now created the component, but at the moment it does not actually do
anything. It has no function to run. We need to add a method into the CFC to create a
function to call and use within our application. The following code is a basic function
definition; place it between the opening and closing cfcomponent tags:

<cffunction name="sayHello">
 <!--- the CFML code for the method will go here --->
</cffunction>

Listing 1.2 – basic function definition

You have now added a method to the CFC. The cffunction tags are nested
within the cfcomponent tags. We now need to add some CFML code within the
cffunction tags to create our method and perform the operation. Let's create a
variable within the function that will be our display message. The following code is
for declaring a string variable; place it inside the cffunction tags:

<cffunction name="sayHello">
 <cfset var strHelloMessage = 'Hello World!' />
</cffunction>

Listing 1.3 – declaring a string variable

We have created a string variable containing the text to display to the browser.

Returning the data
To return the data we need to add an extra tag into the method. This is possible
by using the cfreturn tag, which returns results from a component method. The
cfreturn tag has one required attribute that is the expression or value you wish to
return.

Add the following code to your CFC so our method will return the welcome message
and the completed component will look like this:

<cfcomponent displayName="greetings">
 <cffunction name="sayHello">

Introducing ColdFusion Components

[12]

 <cfset var strHelloMessage = 'Hello World!' />
 <cfreturn strHelloMessage />
 </cffunction>
</cfcomponent>

Listing 1.4 – returning data from the function

ColdFusion 9 scripted components
Since the release of ColdFusion 9, developers now have the ability to also write
ColdFusion components in complete script syntax instead of pure tag form.

To write the previous component in this format, the code would look as follows:

component
 displayname="greetings"
 {
 function sayHello(){
 // the CFML code for the method will go here
 var strHelloMessage='Hello World';
 return strHelloMessage;
 }
 }

Listing 1.5 – component declaration in the script syntax

Although written using cfscript syntax, there is no requirement to wrap the code
within <cfscript> tags, instead we can write it directly within the .cfc page.

We do not even need to contain the code within cfcomponent tags, as the entire
content of the component will be compiled as cfscript if left as plain text
without tags.

Creating your object
There it is, a simple ColdFusion Component. The method is created using the
cffunction tags, wrapped up nicely within the cfcomponent tags, and the value
returned using the cfreturn tag. Now that we have written the function, how do
we call it?

In this example, we will call the component and run the method by using the
createObject() function. Create a new file called hello.cfm and add the following
code to the template:

<cfset objGreeting = createObject('component', 'greetings') />
<cfoutput>#objGreeting.sayHello()#</cfoutput>

Chapter 1

[13]

Listing 1.6 – creating the component object

In the previous code, we have created an instance of the greetings CFC, which
we can reference by using the objGreeting variable. We have then accessed the
sayHello() method within the component, surrounded by cfoutput tags, to
display the returned data.

Save the file and view it within your browser. You should now see the welcome
message that we created within the method.

Restricting your functions to scopes
Imagine we are sending some data through to a login page in our application within
the URL scope; the first and last name of a particular person. On the page, we want
to join the two values and combine them into one string to form the individual's full
name. We could write the code directly on the page, as follows:

<cfoutput>
 Hello, #URL.firstName# #URL.lastName#
</cfoutput>

Listing 1.7 – displaying URL variables as a string

Although this works, you can revise the code and transform it into a ColdFusion
function to concatenate the two values into the required single string and return
that value:

<cffunction name="getName">
 <cfset var strFullName = URL.firstName & ' ' & URL.lastName />
 <cfreturn strFullName />
</cffunction>

Listing 1.8 – concatenate variables into string

Introducing ColdFusion Components

[14]

You can then call this function within your .cfm page to output the resulting string
from the function:

<cfoutput>
 #getName()#
</cfoutput>

However, within this code you have restricted yourself to using only the specific URL
scope. What if the first name and last name values were in the FORM scope, or pulled
from a query? This block of code is useful only for values within the form scope.

Using arguments within your methods
To allow us to be able to pass in any parameters into the getName() function, we
need to use the cfargument tag to send data into the method. By changing the
function in the following code example, the method will create the concatenated
string and produce the same results from two parameters or arguments that you
choose to pass in.

<cffunction name="getName">
 <cfargument name="firstName" type="string" />
 <cfargument name="lastName" type="string" />
 <cfset var strFullName = arguments.firstName & '
 ' & arguments.lastName />
 <cfreturn strFullName />
</cffunction>

Listing 1.10 – using arguments within your function

The cfargument tag creates a parameter definition within the component method,
and allows you to send in arguments for inclusion into the functions.

The Arguments scope
The Arguments scope only exists in a method. The scope contains any variables
that you have passed into that method, and you can access the variables within the
Arguments scope in the following ways:

•	 using structure notation - Arguments.variablename or
Arguments["variablename"]

•	 using array notation - Arguments[1]

Chapter 1

[15]

The Arguments scope does not persist between calls to available CFC
methods, meaning that you cannot access a value within the Arguments
scope in one function from inside a different function.

Redefine the function parameters
By defining two arguments and sending in the values for the first and last names,
you have created an unrestricted function that is not tied to a specific scope or set of
hardcoded values. You can instead choose what values to pass into it on your calling
page:

<cfoutput>
 #getName('Gary', 'Brown')#
</cfoutput>

Lsiting 1.11a – sending parameters into our function

Now that we have removed any restrictions to the values we pass in, and taken
away any references to hardcoded variables, we can reuse this function, sending in
whichever values or variables we choose to. For example, we could use variables
from the FORM scope, URL scope, or query items to concatenate the string:

<cfoutput>
 #getName(form.firstName, form.lastName)#
</cfoutput>

Listing 1.11b – sending parameters into our function

Let's take our getName() method and add it into the greeting.cfc file. By doing so,
we are grouping two methods that have a similarity in purpose into one component.
This is good programming practice and will aid in creating manageable and clearly
organized code.

Our greeting.cfc should now look like this:

<cfcomponent name="greetings">
 <cffunction name="sayHello">
 <cfset var strHelloMessage = 'Hello World!' />
 <cfreturn strHelloMessage />
 </cffunction>
 <cffunction name="getName">
 <cfargument name="firstName" type="string" />
 <cfargument name="lastName" type="string" />
 <cfset var strFullName = arguments.firstName & '
 ' & arguments.lastName />

Introducing ColdFusion Components

[16]

 <cfreturn strFullName />
 </cffunction>
</cfcomponent>

Listing 1.12 – revised greeting.cfc

Combining your methods
As we have seen, you can easily access the methods within a defined CFC and
output the data in a .cfm template page.

You can also easily access the functionality of one method in a CFC from another
method. This is particularly useful when your component definition contains
grouped functions that may have a relationship based upon their common purpose.

To show this, let's create a new method that will use the results from both of our
existing functions within the greetings.cfc file. Instead of displaying a generic
"Hello World" message, we will incorporate the returned data from the getName()
method and display a personalized greeting.

Create a new method within the CFC, called personalGreeting.

<cffunction name="personalGreeting">
 <cfargument name="firstName" type="string" />
 <cfargument name="lastName" type="string" />
 <cfscript>
 strHello = sayHello();
 strFullName = getName(firstName=arguments.firstName,
 lastName=arguments.lastName);
 strHelloMessage = strHello & ' My name is ' & strFullName;
 </cfscript>
 <cfreturn strHelloMessage />
</cffunction>

Listing 1.13 – personalGreeting method

Within this method, we are calling our two previously defined methods. The
returned value from the sayHello() method is being stored as a string variable,
"strHello".

We then retrieve the returned value from the getName() method and store this in a
string variable "strFullName". As we have written the getName() function to accept
two arguments to form the concatenated name string, we also need to add the same
two arguments to the personalGreeting() method, as done in the previous code.
They will then be passed through to the getName() method in exactly the same way
as if we were calling that function directly.

Chapter 1

[17]

Using the two variables that now hold the returned data, we create our
strHelloMessage variable, which joins the two values, and is then returned from
the method using the cfreturn tag.

In this method, we used CFScript instead of CFML and cfset tags, which were
used in our previous functions. There is no hard and fast rule for this. You can use
whichever coding method you find the most comfortable.

Let's call this method on our hello.cfm template page, using the following code:

<!--- instatiate the component --->
<cfset objGreeting = createObject('component', 'greetings') />
<!--- access the method and assign results to a string --->
<cfset strPersonalGreeting = objGreeting.personalGreeting(
 firstName="Gary", lastName="Brown") />
<cfoutput>#strPersonalGreeting#</cfoutput>

Listing 1.14 – calling the personalGreeting method

We are sending in the same arguments that we were passing through to the original
getName() method, in the same way. This time we are passing these through using
the newly created personalGreeting() method.

You should now see a personalized greeting message displayed in your browser:

Protecting your local variables
In our previous personalGreeting() method, we included two separate functions,
sayHello() and getName(), into the main method. This is not an uncommon
practice, and is what you would expect when writing detailed components with
relationships between its included functions.

Introducing ColdFusion Components

[18]

One issue that can arise when developing in this way is when two or more methods
contain a variable of the same name and the value of that variable is accessed or
changed by one of the methods.

As an example, the following code contains two functions, baseNumber() and
multiplyNumbers().

While the cfcomponent tag has been excluded in this example, this could also easily
be turned into a CFC by wrapping the functions within cfcomponent tags.

<cfoutput>
<cffunction name="baseNumber" returnType="numeric">
 <cfargument name="a" type="numeric" required="true" />
 <cfset x = arguments.a />
 <cfreturn x />
</cffunction>
<cffunction name="multiplyNumbers" returntype="string">
 <cfargument name="a" type="numeric" required="true" />
 <cfargument name="b" type="numeric" required="true" />

 <!--- multiply our basenumber value by 10 --->
 <cfset x = 10 />
 <cfset y = baseNumber(a) />
 <cfreturn y & " multiplied by " & x & " = " & x * arguments.b />
</cffunction>
<cfloop from="1" to="10" index="i">
 #multiplyNumbers(i,i)#

</cfloop>
</cfoutput>

Listing 1.15 – two user-defined functions

A cfloop tag runs a loop from 1 to 10. The multiplyNumbers() function accepts two
arguments. In this example, these are both the index numbers of the loop. We want
to multiply our baseNumber value (argument 'a'), by 10 for each loop, creating a 10
times table list. To do this, the multiplyNumbers() function has a hardcoded value
(x) that is set to the value of 10.

The desired results you would expect from this code should be:

1 multiplied by 10 = 10
2 multiplied by 10 = 20

However, this is not the case. If you save the code to a .cfm template and run it in
your browser, you will get the following result:

Chapter 1

[19]

This is clearly not the result you would expect. So what's happening to cause this
issue? Let's take another look at our two functions:

<cffunction name="baseNumber" returnType="numeric">
 <cfargument name="a" type="numeric" required="true" />
 <cfset x = arguments.a />
 <cfreturn x />
</cffunction>

<cffunction name="multiplyNumbers" returntype="string">
 <cfargument name="a" type="numeric" required="true" />
 <cfargument name="b" type="numeric" required="true" />
 <!--- multiply our basenumber value by 10 --->
 <cfset x = 10 />
 <cfset y = baseNumber(a) />
 <cfreturn y & " multiplied by " & x & " = " & x * arguments.b />
</cffunction>

Listing 1.16 – examining the two methods

You can see that both functions have a variable called x. The baseNumber()
function stores the value of the argument as the x variable, which it returns into
the multiplyNumbers() function for use in the equation. The multiplyNumbers()
function also has a variable called x, which is the hardcoded number we wish to use
as a multiplier, in this case 10.

Within the function, the returned value from the baseNumber() method is assigned
to y for use in the equation, but as this included function is run, it overwrites the
value of the hardcoded x variable with its own x value. This, in turn, is passed into
the equation, which throws off the expected results.

Introducing ColdFusion Components

[20]

In the previous example, the x value in both functions is public, meaning that it
can be altered or overwritten by any included functions, or if in a CFC, any defined
method within the component. They are, in essence, set as 'open' variables that can
be accessed and amended.

By running the two functions in this way, with openly accessible variables, it has the
effect of ruining our ten times table. Imagine that we had a method controlling the
shopping cart in an e-commerce application, updating quantities and costs, perhaps
even stock levels of products. If we left these public variables open, they could
be accessed by any included functions, and the values could change dramatically
altering our shopping cart and its data.

Using the Var scope
To avoid this issue, the best practice is to set any local function variables to only
be accessed by that particular function. This is achieved by using the Var keyword
when setting variables. By applying variable to the Var scope, you are restricting
public access to them and declaring that they are only accessible within the method
in which they are defined. This removes any chance that external functions will
corrupt the values.

You should always use the Var keyword on variables that are used
only inside of the function in which they are declared.

Let's alter our code to include the Var keyword to ensure the variables are available
only to the functions in which they are written:

<cffunction name="baseNumber" returnType="numeric">
 <cfargument name="a" type="numeric" required="true" />
 <cfset Var x = arguments.a />
 <cfreturn x />
</cffunction>

<cffunction name="multiplyNumbers" returntype="string">
 <cfargument name="a" type="numeric" required="true" />
 <cfargument name="b" type="numeric" required="true" />
 <cfset Var x = 10 />
 <cfset var y = baseNumber(a) />
 <cfreturn y & " multiplied by " & x & " = " & x * arguments.b />
</cffunction>

Listing 1.17 – Var scoping our variables

Chapter 1

[21]

If we save the code with the Var keyword applied to the variables and view the page
in the browser, you will now see the correct results displayed:

Regardless of the type of variable you are using within your component methods,
(a query, string, integer, array, or structure) if it is used only within the function
in which it is declared, it needs to be Var scoped to protect it and to avoid any
unwanted amendments by other functions.

Placing your Var scoped variables
Up to ColdFusion 8, all Var scoped variables were required to be placed after any
arguments within the function (if there are any included), and before any CFML.

Enhancements in ColdFusion 9 removed this restriction, and Var scoped variables
can be placed anywhere within a code block or function.

Naming your Var scoped variables
While there are no strict conventions when naming your Var scoped variables, be
aware that a naming conflict will arise if your local variable name is the same as any
defined argument name (or the name of another local variable).

<cffunction name="baseNumber" returnType="numeric">
 <cfargument name="x" type="numeric" required="true" />
 <cfset Var x = arguments.x />
 <cfreturn x />
</cffunction>

Introducing ColdFusion Components

[22]

Listing 1.18 – baseNumber function

For example, if we have written the baseNumber() method as in the previous code,
with the argument and local variable both called x, this would display an error, as a
local variable within a function cannot be declared twice.

Accessing your CFC
Once you are ready to use your CFCs, you need to access the methods placed within.
There are two ways to access a CFC:

•	 object instantiation
•	 invoking the CFC

Instantiating the object
When you instantiate a CFC, you create an instance of the component. This instance
preserves the data within the CFC for as long as it exists. You would typically create
an instance of a component at the top of the page. By doing so, you would have
access to its methods and functions on the entire page, without having to create a
new instance for each call.

There are three methods available to you to create an instance of the CFC:

•	 createObject
•	 cfobject
•	 using the NEW operator in ColdFusion 9

Using the createObject function
As used in our earlier examples, the createObject() function creates and returns a
ColdFusion object.

<cfscript>
 objGreeting = createObject('component', 'greetings');
</cfscript>

Listing 1.19

Here, we are creating a new instance of the "greetings" component. The first parameter
tells the createObject() function that we want a component, and the second
references the name of the component of which we want to create an instance.

Chapter 1

[23]

While the CFC is in the same directory as the calling page, in the previous example,
if we had the CFC within a different directory in the webroot, for example, a folder
named components; this second parameter would read as follows:

createObject('component', 'components.greetings');

This is because the second parameter is a dot notation representation of the path to
the component.

Using the cfobject tag
Similar to the createObject() function, the cfobject tag has three attributes.

<cfobject name="greetingsObject" component="greetings"
 type="component" />

Listing 1.20

The name attribute defines the name of the returned variable of the CFC instance
so you can access the component to use your methods. The component attribute
represents a dot notation path to the CFC you wish to instantiate. The third attribute,
type, is optional, and has the default value component.

Using the NEW operator
The enhancements in ColdFusion 9 now provide an alternative way of creating an
instance of a component object without using the createObject() function.

We can now create the object through the use of the new operator, like so:

<cfscript>
 // create the object
 objGreeting = new greeting();
</cfscript>

Listing 1.21

Using cfinvoke
You can invoke your component and access the method simultaneously by using the
cfinvoke tag. When you invoke (call) the CFC using this tag, you are not creating
an instance of the component that will be preserved and available for use elsewhere
within your CFML page. Instead, you are creating an instance of the CFC that comes
into existence as soon as you invoke the method, and ceases to exist as soon as the
requested method has returned a result.

Introducing ColdFusion Components

[24]

In essence, you are bringing the component to life long enough to get the details you
need from it and closing it down as soon as the information is returned.

The cfinvoke tag
Let's make a call to our sayHello() method within the greetings.cfc component.

Add the following code to your hello.cfm template page:

<cfinvoke component="greetings" method="sayHello"
 returnVariable="strHello" />
<cfoutput>#strHello#</cfoutput>

Listing 1.22

Here, we are invoking the greetings component, selecting the method within the
CFC that we want to access, (in this case the sayHello() function) and assigning
a variable (strHello), to which the returned data will be saved for us to access it
within the page.

Outputting the returnVariable onto the page will provide us with the same result
as we have seen before.

Using cfinvokeargument
The cfinvoke tag also allows us to pass in parameters to the methods we are calling,
by means of the cfinvokeargument tag.

<cfinvoke component="greetings" method="personalGreeting"
 returnVariable="strPersonalGreeting">
 <cfinvokeargument name="firstName" value="Matt" />
 <cfinvokeargument name="lastName" value="James" />
</cfinvoke>

Listing 1.23

We are sending our parameters used in the personalGreeting() method in a
similar format to the cfargument tag, using the cfinvokeargument tag, which is
nested within the cfinvoke tag. The cfinvokeargument tag takes the name and
value of the argument and sends it into the method you are calling.

Using attributes as arguments
Alternatively, when using the cfinvoke tag, you can send through the parameters as
named attribute-value pairs, providing one attribute per argument.

Chapter 1

[25]

<cfinvoke component="greetings" method="personalGreeting"
 firstName="Gary" lastName="Brown"
 returnVariable="strPersonalGreeting" />

Listing 1.24

You can see in the previous code that the firstName and lastName parameters are
written as attributes within the cfinvoke tag itself.

Using an argument collection
The optional argumentCollection attribute for the cfinvoke tag accepts a structure
in the form of an associative array of arguments to pass into the method.

<cfscript>
 // create a structure to hold the values
 stuArguments = structNew();
 stuArguments.firstName = "James";
 stuArguments.lastName = "Brown";
</cfscript>
<cfinvoke component="greetings" method="personalGreeting"
 argumentCollection="#stuArguments#"
 returnVariable="strPersonalGreeting" />

Listing 1.25

The structure names must match the names of the arguments within the method.

Passing arguments into an instance
method call
As you have seen in the previous examples, we have sent parameters into the
methods on our pages. There are two options available to send your arguments into
your method call on an instantiated object.

As a list
You can send the two arguments through as a comma-delimited list. If you use this
option, the order of the parameters you pass into the function call must match the
order of arguments defined within the method.

Introducing ColdFusion Components

[26]

In our personalGreeting() function the first name is the first argument, and the
last name is the second argument, therefore you would do the following to call
the method:

<cfset strPersonalGreeting =
 objGreeting.personalGreeting("Daft","Vader") />

Listing 1.26

As named values
An alternative method of sending arguments into a function is to use named values.
This option ensures that the values passed through are assigned to the correct
argument within the method. This means you do not have to place the parameters
within the function call in any specific order, as the name of the parameter will
match the name of the argument within the method.

<cfset strPersonalGreeting =
 objGreeting.personalGreeting(firstName="Daft",lastName="Vader") />

Listing 1.27

As an argumentCollection
As mentioned earlier, we also have the ability to send arguments through to the
method using the argumentCollection attribute, and send through a structure
of values.

Arguments in action
Let's look at another simple use case for creating reusable components and functions,
which will also highlight some benefits of passing arguments into your methods.

Merging your functions into one
Create a new CFC called contacts.cfc, and add your cfcomponent tags to define
the component.

Add the following method in the contacts.cfc file. This new function runs a
SELECT query on the Project Tracker application database to retrieve a recordset of
all contacts:

<cffunction name="getContacts">
 <cfset var rstContacts = "" />

Chapter 1

[27]

 <cfquery name="rstContacts" datasource="projectTracker">
 SELECT firstName,lastName FROM Owners
 </cfquery>
 <cfreturn rstContacts />
</cffunction>

Listing 1.28

We now have a function returning our query data. We also want to have a query to
pull out a specific record based on the record ID of a particular person.

We can create a second function to handle this as well:

<cffunction name="getContact">
 <cfargument name="ID" type="numeric" />
 <cfset var rstContact = "" />
 <cfquery name="rstContact" datasource="projectTracker">
 SELECT firstName,lastName FROM Owners
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.ID#" />
 </cfquery>
 <cfreturn rstContact />
</cffunction>

Listing 1.29

These two methods within the contacts.cfc file interact with our database and
return query data. However, the two queries pull out exactly the same information
from the database. The only difference between the queries is that getContact()
returns records for a specific user, based upon the ID value. We can easily streamline
our CFC by combining these two methods into one, which will remove unnecessary
code from our files and theoretically turn one function into two.

Using cfargument to combine your methods
In this example, we will combine the two SELECT queries into one method, using the
cfargument tag.

<cffunction name="getContact">
 <cfargument name="ID" type="numeric" default="0" />
 <cfset var rstContact = "" />
 <cfquery name="rstContact" datasource="projectTracker">
 SELECT firstName,lastName FROM Owners
 <cfif arguments.ID GT 0>
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.ID#" />

Introducing ColdFusion Components

[28]

 </cfif>
 </cfquery>
 <cfreturn rstContact />
</cffunction>

Listing 1.30

The cfargument tag has a default attribute, which allows you to provide a default
value for an argument if you do not pass one into the method. As the customer ID
parameter type is set to "numeric", we have set the default value of the argument to
"0". This value will now always be available within our method and will stay at the
default value until a parameter is passed in to the function.

By providing a default value, we are now able to wrap a cfif tag block around the
WHERE clause of the query. If the value of arguments.ID (the value of the parameter
within the arguments scope) is greater than 0, that is, if we have passed a numeric
value into the method ourselves, then include the WHERE clause when running the
SQL within the cfquery tags.

By doing this, we have merged the two methods within the contacts.cfc into one,
optimizing our code and allowing it to perform more than one function.

Let's run this query. Create a new page template called query.cfm, and paste in the
following code to create the object and run the method without sending in
any parameters:

<!--- instantiate the object --->
<cfset objContacts = createObject('component', 'contacts') />
<!--- dump the results --->
<cfdump var="#objContacts.getContact()#" />

Listing 1.31

If no ID value is sent through as a parameter, meaning the default value is 0, the
method will return the full recordset of all content from the Owners database table:

Chapter 1

[29]

Amend the code by adding in a numeric value to pass through as the ID argument:

<!--- dump the results --->
<cfdump var="#objContacts.getContact(2)#" />

Listing 1.32

If we provide an ID within the argument, the method will only return the row for the
contact that has the matching ID value:

The dumped object now shows us the parameter sent through in the arguments
scope and the SQL query that now includes the WHERE clause.

The simple solution of using an argument with a default value and a cfif statement
to control the flow has streamlined and reduced the amount of extraneous code
within your application.

Creating an object constructor
In our contacts.cfc, we have defined a method which contains a query. This query
has the datasource name attribute defined to correctly reference the database setup
within the ColdFusion administration console.

As with all good development, we want to restrict hardcoding any values or
references wherever we can and instead use variables to define them, (in this case the
datasource name attribute).

A common practice in application development is to create your datasource name
and store it in the Application scope, ensuring its availability to every page
template that is called, for example:

<cfset application.dsn = "projectTracker" />

Introducing ColdFusion Components

[30]

You could use the Application scope variable application.dsn directly within
your CFCs as the dynamic name referencing the datasource. However, this is not
considered best coding practice, as you have instantly opened up your component
methods to a fixed scope variable.

One of the main goals in component development is to create closed CFCs and
methods that do not need to worry about whether or not a fixed variable exists.

If we refer back to the getName() function on page 7, we can see how it was
originally fixed to read the first and last name from the URL scope. We resolved that
issue by removing any fixed scope references and optimized the method by adding
cfargument tags and the ability to pass in parameters.

We will do the same for our contacts.cfc to send in our datasource name for use in
the cfquery tags.

Instead of creating a new argument for each method within the component that
requires the datasource, we will create a new function that will hold the variables we
need and will be open for all methods defined within the CFC to read variables from.

Creating an init() function
Let's modify our code within the contacts.cfc gallery to write the new
function, init().

<cfcomponent name="contacts">

 <cffunction name="init">
 <cfargument name="datasource" type="string" required="true" />
 <cfscript>
 Variables.attributes = structNew();
 Variables.attributes.dsn = arguments.datasource;
 </cfscript>
 <cfreturn this />
 </cffunction>

 <cffunction name="getContact">
 <cfargument name="ID" type="numeric" default="0" />
 <cfset var rstContact = "" />
 <cfquery name="rstContact" datasource="projectTracker">
 SELECT firstName,lastName FROM Owners
 <cfif arguments.ID GT 0>
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.ID#" />
 </cfif>
 </cfquery>
 <cfreturn rstContact />

Chapter 1

[31]

 </cffunction>

</cfcomponent>

Listing 1.33

You can now see the init() method defined within the component. The concept
of a constructor within an object is a common practice in most languages. We have
included a cfargument tag with the name datasource, which will allow us to send
in the name of the datasource we wish to use within this object.

Within the CFScript block, we then create a new structure that assigns the value of
the datasource argument to the struct value dsn, and the structure has been assigned
to the Variables scope within the CFC.

We can then amend our getContact() method and alter the datasource attribute to
use the new reference, stored in the Variables scope:

<cffunction name="getContact">
 <cfargument name="ID" type="numeric" default="0" />
 <cfset var rstContact = "" />
 <cfquery name="rstContact"
 datasource="#variables.attributes.dsn#">
 SELECT firstName,lastName FROM Owners
 <cfif arguments.ID GT 0>
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.ID#" />
 </cfif>
 </cfquery>
 <cfreturn rstContact />
</cffunction>

Listing 1.34

By sending the value into the object constructor method when instantiating the
component we have removed the hardcoded reference to the datasource.

The Variables scope
The Variables scope can be made available to the entire CFC by setting a value
either within one of the methods or in the constructor. The value of that variable is
then made available to any other method (including the constructor).

The Variables scope can be used in a similar way to storing values within the
Application scope, whose values are always available throughout the entire
application. This makes it ideal for sending in variables such as the datasource name.

Introducing ColdFusion Components

[32]

Calling your init() function
To set the value of the datasource name into the Variables scope, we need to call
the init function to pass through the argument.

In previous examples, we have already used the createObject() function to create
an instance of the component. We are going to use exactly the same code, only this
time we will append the init()function to the end of instantiation method call:

<!--- instantiate the object --->
<cfset objContacts = createObject('component',
 'contacts').init(datasource="projectTracker") />

Listing 1.35

By doing this, we have passed our datasource name as an argument into the init()
method within the contacts.cfc. The argument value is then stored within the
Variables scope structure (Variables.attributes).

Values stored within the Variables scope last as long as the
component instance exists, and therefore can persist between calls to
methods of a CFC instance.

The Variables scope within your CFC is available to any included pages (using the
cfinclude tag), and any Variables scope variables that you have defined in the
included page are also available to the CFC.

The This scope
At the end of the function, we have the cfreturn tag, which we have seen before.
However, this particular method is returning a different value, which is This:

<cffunction name="init">
 <cfreturn This />
</cffunction>

Listing 1.36

By adding a return type of This to the cfreturn tag, you are returning the entire
object, including all of its methods, variables, and data.

In the query.cfm calling page, use the cfdump tag to display the object in the browser:

<!--- dump the contacts object --->
<cfdump var="#objContacts#" />

Chapter 1

[33]

Listing 1.37

As the init() method returns the object in the This scope, we are able to access the
object directly using the cfdump tag.

The This scope is similar to the Variables scope due to the fact that it is 'globally'
accessible to the entire CFC. In addition, the This scope is accessible outside of the
CFC, so you could call and reference the values from your object within your .cfm
template calling page.

For example, if we amended the code within the init() method in the CFC from
using the previously mentioned Variables scope to the This scope, we could access
the datasource name from our calling page:

<cffunction name="init">
 <cfargument name="datasource" required="true" />
 <cfscript>
 This.attributes = structNew();
 This.attributes.dsn = arguments.datasource;
 </cfscript>
 <cfreturn This />
</cffunction>

Listing 1.38

In the query.cfm, we can now output the name of the datasource from the attributes
structure stored within the This scope:

<!--- dump the contacts object --->
<cfdump var="#objContacts#" />
<cfoutput>The datasource name is
 #objContacts.attributes.dsn#</cfoutput>

Introducing ColdFusion Components

[34]

Listing 1.39

Notice that the attributes structure is now publicly available, allowing us to access
the name of the datasource directly from the CFC.

This highlights the difference between the Variables and This scope. When the
attributes were assigned to the Variables scope, they were kept hidden from
external views, despite being available to all methods within the CFC. As soon as we
changed the init() method to store attributes within the This scope, the structure
became a visible, 'public' variable that could be accessed outside of the CFC.

Although the This scope is a required tool for returning a complete CFC object, it
is not best practice to store variables within the scope. This is because they can be
accessed and altered. Unless you specifically choose to alter your object's variables in
this manner, this would not be a safe development practice.

Values stored within the This scope last as long as the component
instance exists, and therefore can persist between calls to methods
of a CFC instance.

Chapter 1

[35]

Summary
We have looked at ColdFusion Components, what they are and what they are for.
Within this chapter, we have also covered:

•	 The basic structure of a CFC
•	 The component tags
•	 Grouping functions and methods
•	 How to use arguments within your methods
•	 Optimizing and encapsulating your functions to improve code portability

•	 Instantiating your objects, as well as creating an object constructor method
•	 The Arguments, This and Variables scope, and to Var scope

function variables

Effective Component
Development

In this chapter, we will learn about the benefits of including attributes into our
components, functions, and arguments within the ColdFusion component.

We will also cover the following topics:

•	 Using the pseudo-constructor method to set variables
•	 Whitespace suppression within the CFC
•	 Returning data from your function
•	 Access properties and restrictions
•	 Documentation and introspection
•	 Creating and reading metadata from the component

Pseudo-constructors
In Chapter 1, Introducing ColdFusion Components we looked at how to create an
instance of a ColdFusion component using the createObject() function. We also
looked at how to pass values through to the instantiated object upon creation using
the init() method (also known as the object constructor method), thereby making
them available to all methods within the CFC.

You can use any CFML tags or CFScript code within your component document to
create your constructor code, and typically it is best practice to place the constructors
at the top of the document, directly beneath the opening cfcomponent tag and before
any method definitions.

Effective Component Development

[38]

ColdFusion provides an alternative method for setting your CFC-wide variables in
your component, using a pseudo-constructor. This term simply refers to the code
contained within the cfcomponent tags but outside of a cffunction block.

A pseudo-constructor's role is to set variables, run queries, or run any code during
the instantiation of the object.

Using the pseudo method
Let's use a pseudo-constructor in an example. Create a new CFC, called projects.cfc,
and save the file within your component directory structure, inside a directory called
projects from your webroot. The path to the projects.cfc file should now be com/
projects/projects.cfc. Place the following sample data within the new file:

<cfcomponent name="Projects">
 <!--- pseudo constructor code here --->
 <cfset This.dsn = "projectTracker" />
 Our datasource is #This.dsn#
 <!--- function to get the current date --->
 <cffunction name="getCurrentDate" output="false" returnType="Date">
 <cfreturn dateFormat(Now(), "dd/mm/yyyy") />
 </cffunction>
</cfcomponent>

Listing 2.1 – Using the pseudo constructor

We have a method called getCurrentDate() that returns the current date. Directly
above this function we are setting a dsn variable that we can use to reference our
datasource name in any included queries. We also have a single line of text (Our
datasource is #This.dsn#)—all of which form our basic pseudo-constructor code.

Create a new CFM template called projects.cfm within the webroot, and place the
following code within it to instantiate the object and output the data:

<cfscript>
 objProjects = createObject("component", "com.projects.Projects");
</cfscript>
<cfoutput>
 The current date is #objProjects.getCurrentDate()#
</cfoutput>

Listing 2.2 – Output the current date

Chapter 2

[39]

Notice that in this example, we are not using an init() method as we have not
written one in the component. Instead, we are using the pseudo-constructor to create
the variables we need within the object. With the pseudo-constructor setting the dsn
value, we can create a variable available for use throughout the entire CFC.

Within the cfoutput tags, we are returning the value from the getCurrentDate()
method. Save this page and view it within your browser to check the results.

As you would expect, the getCurrentDate() method has returned the expected
date value, using the ColdFusion dateFormat() function.

You may notice in the output from our example that the text we had written at the
top of the projects.cfc (Our datasource is #This.dsn#), has also been written to
the browser, although it has not been evaluated as an expression.

This is to highlight the important fact that all code and text within the pseudo-
constructor code block will be processed during object instantiation. As we have
seen, even standard text can and will be returned from the CFC.

Suppressing whitespace
ColdFusion can generate a lot of unnecessary whitespace from any CFML code. It
can also output unwanted text written in a component or method, (in our example,
the line of text in the pseudo-constructor).

Luckily, there is a way to reduce any whitespace and to ensure that you display only
the variables or data you wish to.

Effective Component Development

[40]

Output attribute
The output attribute is an optional Boolean attribute, available for use within the
cfcomponent and cffunction tags. Through its use you are able to dictate the way
in which whitespace and data output is managed.

Let's revise our component code by adding in the output attribute to the opening
cfcomponent tag:

<cfcomponent name="Projects" output="false">
 <!--- pseudo constructor code here --->
 <cfset This.dsn = "projectTracker" />
 Our datasource is #This.dsn#	
 <!--- function to get the current date --->
 <cffunction name="getCurrentDate" output="false" returnType="Date">
 <cfreturn dateFormat(Now(), "dd/mm/yyyy") />
 </cffunction>
</cfcomponent>

Listing 2.3 – Adding the output attribute to projects.cfc

By setting the output attribute to false at the component level, we have told
ColdFusion not to display or output any variables or data within the pseudo-
constructor code.

Running the projects.cfm page in the browser again will still show the returned
string from the getCurrentDate(), but the text is no longer visible.

Change the value of the output attribute to true, and run the projects.cfm page in
the browser again.

Chapter 2

[41]

You can now see that the #This.dsn# value is being displayed as an evaluated
ColdFusion variable, without the need for any cfoutput tags.

Notice that the dsn variable was stored in the This scope within the CFC, to make it
visible on the ColdFusion calling page if we wished to call it directly.

As covered in Chapter 1, you could restrict external access to this value by setting it
to the Variables scope within the component. This would ensure that the variable
would only be visible to the methods within the CFC, and not any .cfm calling pages.

If no output attribute is written in the cfcomponent tag, as we had included in our
first block of code, ColdFusion displays output from within the pseudo-constructor.
It does not evaluate any variables such as the #This.dsn# expression. To do so, you
would need to wrap expressions within cfoutput tags.

The same output attribute, as mentioned, can also be applied to cffunction tags to
suppress or display any code written within the specific method, and works with
exactly the same principle and output rules as mentioned earlier.

It is a good practice to set your output attribute to false to avoid
generating unnecessary whitespace or returning any extraneous data unless
it is the specific requirement of the component or function to do so.

Pseudo-constructor or init() method
We have seen that the pseudo-constructor method is an alternative to the init()
method as a way of constructing your properties during its instantiation.

Effective Component Development

[42]

However, as shown in the example earlier in the chapter, the pseudo-constructor is
unable to accept variables. This is because it is not included in a method that we are
able to pass data into. It instead runs as soon as an instance of the object is created.
As a result, any variables, such as our dsn reference, are hardcoded into the CFC.

This poses a problem. For truly object-oriented code, remember the rules
surrounding encapsulation and hardcoding values. We are also unable to
dynamically alter the values set within our objects.

The init() method was established by the ColdFusion community as the preferred
standard practice to create and instantiate components. By calling this method
directly when creating the object, as you have done in Chapter 1, you are able to pass
in your arguments and parameters, giving you the freedom to send through any data
that you require, without hardcoding any references.

The pseudo-constructor is useful for remote-access CFCs, a web service, for example.
When a remote method is called, ColdFusion creates a new instance of the component,
and executes the method requested (and this method only) in the remote call. As such,
we would be unable to call an init() method at the same time during instantiation, so
the ability to set variables within the pseudo-constructor is of great benefit.

Returning values and variables
ColdFusion components allow you to return the values of all allowed data types. The
cfreturn tag, as we have seen in Chapter 1, and in the getCurrentDate() method in
the projects.cfc code, returns a single variable. The return statement in CFScript
also returns only one result at a time. If a requirement for the code was to send back
more than one variable from the method, a structure or array could be returned
containing all required variables and values.

When returning data from a method, you have the ability to explicitly specify what
type of value is expected to be returned by using the returnType attribute.

returnType
The returnType attribute is a required attribute when developing ColdFusion
components to be used as web services, but is an optional attribute for all other
CFC functions.

This attribute allows you to specify what type of data the value is returning from
a method. As it is not a required attribute, if nothing was defined, the default
returnType would be 'any', which allows for all possible eventualities.

Chapter 2

[43]

However, specifying this attribute will not only enhance the level of detail of the
documentation when viewing and reading the code, but will also help to ensure that
only the requested data type is returned.

For example, if you wished to return a date, such as in our getCurrentDate()
method, this attribute would be set to returnType="date".

If your function actually returned a query, or any other data type other than that
requested, ColdFusion would display an error with the message, such as "The value
returned from the getCurrentDate() function is not of type query".

Effective Component Development

[44]

Let's add a new function to our projects.cfc. This method will query the
projectTracker database to return a recordset of all projects currently within
the database.

Place the following code beneath the getCurrentDate() method:

<!--- retrieve all projects within the database --->
<cffunction name="getAllProjects" output="false"
 returnType="query">
 <cfargument name="userID" required="false" type="numeric"
 default="0" />
 <!--- var scope the query variable --->
 <cfset var rstProjects = "" />
 <!--- Wrap the query in try/catch --->
 <cftry>
 <cfquery name="rstProjects" datasource="#This.dsn#">
 SELECT ID, name, status, createdByUserID, dateCreated,
 dateCompleted FROM projects
 <cfif arguments.userID GT 0>
 WHERE createdByUserID = <cfqueryparam cfsqltype="integer"
 value="#arguments.userID#" />
 </cfif>
 </cfquery>
 <!--- catch and display any errors --->
 <cfcatch>
 <cfdump var="#cfcatch#" />
 <cfabort />
 </cfcatch>
 </cftry>
 <cfreturn rstProjects />
</cffunction>

Listing 2.4 – Specifying a returnType attribute

This method runs a query for all available projects in the database. We are also
passing in an optional argument for the UserID, (this is set to 0 by default). If the
UserID is sent through and the supplied argument value is greater than the default
value, then the WHERE clause within the SQL statement is included in the query.

The query itself has been contained within a cftry block to catch any errors. The
cfcatch tags directly beneath the query will dump the error structure and will stop
the function from running to the end.

Taking a look at the opening cffunction tag again, you can see the output has been
set to false to remove any occurrences of whitespace.

Chapter 2

[45]

<cffunction name="getAllProjects" returnType="query" output="false">
</cffunction>

Listing 2.5 – Restricting whitespace by using the output attribute

The returnType has been set to query as we are returning a recordset from
the database.

Some of the values available for the returnType attribute of cffunction are:

•	 any
•	 array
•	 boolean
•	 numeric
•	 query
•	 string
•	 struct
•	 xml
•	 A component name—if the specified type attribute is not one of the previously

listed items, ColdFusion will assume that it is a name of a component
•	 void (no value returned)

A full list of attributes for the cfcomponent, cffunction,
cfargument, and cfproperty tags can be found on the Adobe
ColdFusion Livedocs reference site: http://livedocs.adobe.com.

Access properties
Access attributes control the access to the methods within the component. At its
simplest, the access attribute specifies who/what code can access the method and
use its services.

Familiarizing yourself with the range of access attributes gives you greater freedom
to code remotely using a web service and to integrate other web development tools,
such as Flash and Flex, to use ColdFusion output.

It also helps to ensure that you do not restrict function access to a commonly used
utility, or open up a method possibly containing private and confidential business
logic or code to any third party.

Effective Component Development

[46]

The access attribute is placed within the cffunction tag as follows:

<cffunction name="getAllProjects" returnType="query" output="false"
 access="public">
</cffunction>

Listing 2.6 – Using the access attribute

There are four options to choose from when using this attribute, and all four have a
different level of access assigned to them.

Private
This is the most restricted access type when it comes to sharing its functionality.
The private access ensures that only other functions within the same ColdFusion
component are allowed access to the method and its data. This means that no CFML
pages, web services, Flash or Flex applications are able to call the method.

Instead, only methods within the same CFC are able to call any private functions.
Any attempts to access the private function from an external source (anywhere but
within the CFC) will result in an error message to the user stating that the function
could not be found. Although it is written in your code, due to its private access
restrictions, it will not be identified.

To call a private function from another method within the same ColdFusion
component, you would use code similar to this example:

<cffunction name="baseNumber" returnType="numeric" access="private">
 <cfargument name="a" type="numeric" required="true" />
 <cfset Var x = arguments.a />
 <cfreturn x />
</cffunction>
<cffunction name="multiplyNumbers" returntype="string">
 <cfargument name="a" type="numeric" required="true" />
 <cfargument name="b" type="numeric" required="true" />
 <cfset Var x = 10 />
 <cfset y = baseNumber(a) />
 <cfreturn y & " multiplied by " & x & " = " & x * arguments.b />
</cffunction>

Listing 2.7 – Calling a method within from within another

In our multiplication methods shown in Chapter 1, our multiplyNumbers() method
calls the baseNumber() method within the same component.

Chapter 2

[47]

As this method is a utility function that does not return any data required for
anything other than functions within the same CFC, we do not want or need the
baseNumber() function to be externally accessible, so here we have set the access
attribute to private.

Package
The Package access option can be invoked only by other functions in the same
component or by another component within the same package. This is a step up from
the Private option as it not only allows the 'parent' component to read the method,
but also opens up the method to other components.

A package is simply a directory containing CFC files, created and structured to store
relevant groups of components that share a common purpose or resources for a task,
mentioned in Chapter 1.

Public
The Public access option is the default access role for any CFC method if one hasn't
been declared. This option allows any CFML code and other components within the
application, access to the function and its services.

Remote
The Remote option is the most open access available to your CFC methods. It allows
the function to be accessible by anyone and everything. It can be used from within
the same component, from other components (whether they are in the same package
or not), any CFML page on your server, Flash and Flex remoting services, web
service clients, or any HTTP requests.

Getting information about your CFC
ColdFusion components have the unique ability to look within themselves and
display information regarding their content. It can display all of the methods
contained within the component, all of the properties within the functions, including
parameters and arguments, and what, if any, information is to be returned. This is
commonly referred to as introspection.

Effective Component Development

[48]

Introspection
Introspection provides a valuable tool for gaining a comprehensive snapshot of
your code.

This is particularly useful when working in a larger team environment and sharing
code that may have been written by another developer, or perhaps in those rare
moments when you forget what functions you have written in a CFC within your
extensive component library.

CFC Explorer
One method to obtain information about the CFC contents is to view the component
directly in your web browser. ColdFusion has a built-in CFC Explorer tool that is
able to read a ColdFusion component and display its data directly to the end user.

When directly accessing the CFC in your browser, you will be sent to the ColdFusion
administrator screen, where you may be prompted to enter your login details if you
have any set, which is to ensure that only authorized administrators are able to view
the component and its properties.

Using your web browser, go to the following address to view the projects.cfc:

http://localhost:8500/com/Projects/projects.cfc.

Chapter 2

[49]

This method of introspection provides a clear and detailed visual reference of the
component and its included methods, but the level of detail returned depends
heavily on the amount of detail and attributes you choose to include when
developing the component.

Component Doc
ColdFusion also includes an application that reads all of the components on your
server, and allows you to inspect and view whichever component you choose to.
The application clearly and neatly displays your CFC library in a multiple-framed
format, which is easy to navigate and read.

This is also accessible through your web browser by going to the following address:
http://localhost:8500/CFIDE/componentutils/componentdoc.cfm.

Effective Component Development

[50]

Document your code
Having these resources available to you is a great help but of no major use unless
your code is well-formed, well-documented, and commented wherever possible.

As a developer, you may or may not comment your code. It may depend on your
working environment (if you work alone or in a team, however large or small),
your coding practices and standards (you may be detailed when it comes to writing
comments, or you may not even bother to write any) as well as time restrictions
on a project where you may be against the clock to publish your application, and
sometimes plain forgetfulness.

Benefits of documentation
By ensuring that your code is well-documented using some of the standard tag
attributes within the CFC, you can greatly enhance the longevity and usefulness of
your component and declare important information on its usage and requirements.

This is particularly useful when working in a team environment where you may
be reading a CFC written by another developer, or someone reading a component
written by you, and all information relating to the component, the functions, and
arguments required are clearly documented and understandable.

This helps to alleviate any confusion over requirements and the purpose of the code.

The cfcomponent, cffunction, cfargument, and cfproperty tags all accept two
very important (although optional) attributes, which are ideal for creating well-
documented components.

Displayname attribute
The displayname attribute allows you to provide a more focused, descriptive name
for a component, function, argument, or property tag.

Hint attribute
The hint attribute can be used for specifying a bit more detail about the component,
function, argument, or property to which it has been assigned.

Let's amend our projects.cfc file, and add the displayname and hint attributes to
specify more information:

<cfcomponent name="Projects" output="false"
 displayname="A CFC called 'Projects'"
 hint="Used to access project related functions">

Chapter 2

[51]

Listing 2.8 – Provide more details using attributes

An ideal place to use the hint attribute is within the cfargument tag. The name
given to the argument may make sense to the developer who has written the
function, but may be a little confusing or vague for any other developers looking at
the code within the component.

By adding the hint attribute to the cfargument tag, you are able to specify a
description of what the argument is, and what is expected or required to be sent
in to it, instantly providing a helpful reference for others within your team, or as a
reminder for when you revisit the code a few months later.

Description attribute
Another optional attribute that can be used within the cffunction tag is the
description attribute, which allows you provide a short text description explaining
the purpose of the method.

<cffunction name="getCurrentDate" access="public"
 output="false" returnType="date"
 description="I return the current date as dd/mm/yyyy">
 <cfreturn dateFormat(Now(), "dd/mm/yyyy") />
</cffunction>

Listing 2.9 – Setting the description attribute

Although this attribute will not be displayed when using introspection, a good
practice would be to include it in all functions that you write and develop, purely to
act as a useful reminder to anyone reading the code.

User-defined metadata
ColdFusion components provide you with the ability to define custom metadata
information as attributes, which can be applied to the cfcomponent, cffunction,
cfargument, and cfproperty tags.

Although these will not have any direct effect on the functionality of the tags or the
CFC as a whole, they do allow you to enhance your component documentation by
providing more information.

Creating a metadata attribute is a simple case of providing a name/value pair for the
information you wish to include.

Effective Component Development

[52]

When defining and naming custom metadata attributes, you are not
allowed to use a name reserved by any existing ColdFusion component,
cffunction, cfargument, or cfproperty tag.

In the following example, we are creating additional custom attributes to an opening
cfcomponent tag to specify the name of the application that uses the component, and
the name of the developer who wrote the CFC:

<cfcomponent name="Projects" output="false"
 displayname="A CFC called 'Projects'"
 hint="Used to access project related functions"
 Application="Project Tracker" Developer="Matt James">

Listing 2.10 – Defining custom attributes

Obtaining CFC metadata
Metadata attributes have no impact when instantiating the component or object,
and as a result do not hinder the processing time taken to create them. They are
incredibly useful functions, which can be used to view not only user-defined
metadata but all metadata attributed to the component, and can be a quick and
efficient way of viewing key information relating to the object you wish to view.

Unlike the other documentation methods available to you, they will not be visible
when viewing the component through introspection.

To obtain this information from your CFCs, ColdFusion has two functions to retrieve
metadata: getMetaData() and getComponentMetaData().

getMetaData
This function can be used to retrieve metadata attributes and information for any
component instance, once it has been instantiated or created. The function accepts
one parameter, which is the expression of the object you wish it to inspect.

For example, amend the following projects.cfm file to display the information
from the previously created objProjects object:

<cfscript>
 objProjects = createObject("component", "com.Projects.Projects");
 objProjectsMeta = getMetaData(objProjects);
</cfscript>
<cfdump var="#objProjectsMeta#" />

Chapter 2

[53]

Listing 2.11 – Obtaining metadata from the component

The output returned from the getMetaData() function is a structure that contains
detailed information from the component. This includes an array of all functions
written within the component, their method and argument attributes, as well as
all metadata from the core CFC (such as displayname, hint, file path, and output),
including any user-defined attributes that may have been added.

Effective Component Development

[54]

getComponentMetaData
The getComponentMetaData() function produces exactly the same results, but can
be used to obtain the information from any component, whether instantiated or not.

This function accepts one single parameter, which is the path to the component you
wish to inspect and retrieve information for.

<cfscript>
 objContactsMeta = getComponentMetaData('com.contacts.contacts');
</cfscript>
<cfdump var="#objContactsMeta#" />

Listing 2.12 – Details using getComponentMetaData function

Here, we are using the getComponentMetaData() function to retrieve and dump
the output from a component that has not been instantiated. The parameter has been
provided as the dot notation path to the component we wish to introspect.

Chapter 2

[55]

You can see that the output from the getComponentMetaData() function displays
the same struct of arrays as the getMetaData() method.

Custom attributes should contain strings only. You cannot set
metadata using ColdFusion expressions or variables.

Returning metadata
The metadata functions provide an instantly visual detailed breakdown of a
component's attributes and properties. As well as being a valuable resource for
documentation, the custom attributes are also accessible and can be used in your
ColdFusion template pages. Amend your projects.cfm file as follows:

<cfscript>
 objProjectsMeta = getMetaData(objProjects);
</cfscript>
<cfoutput>
 Component: #objProjectsMeta.Name#

 Written by: #objProjectsMeta.Developer#

 Application: #objProjectsMeta.Application#
</cfoutput>

Listing 2.13 – Displaying metadata

Here, we are referencing the name of the attributes we wish to display. Notice that
you can extract not only custom metadata, but standard CFC attributes from
the component.

The output from the previous code is as follows:

Effective Component Development

[56]

In essence, as well as providing detailed structural information on the object or
component, using either the getMetaData() or getComponentMetaData() functions
in this way will allow you to write your own ColdFusion pages to deal with
introspection, should you wish to do so.

Detailed introspection
From the minimal effort of adding extra hint and displayname tags, the output
generated by the CFC Explorer tool for introspection has been enhanced to display
much more detail pertaining to the component and its properties.

Chapter 2

[57]

In a shared working environment, this would be of great benefit to all developers
wishing to collaborate on a project and the CFC resources used within.

Summary
In this chapter, we have discussed the benefits of including additional attributes to
your components and their included properties and methods to improve
on documentation.

Other topics that we have covered in this chapter are:

•	 Using the pseudo-constructor to create variables
•	 Whitespace suppression using the output attribute
•	 Returning variables from your functions

Building Your First Bean
Following the code and examples included in the previous two chapters, we now
have a fairly good understanding of what a ColdFusion component is, how to write
one, how to create an object, and how to use the methods included within the CFC.

Object-oriented programming is a form of programming paradigm that utilizes
"objects", structures of data that consist of data fields and methods, and the object
interactions for development.

Focusing on data rather than processes, the OOP methodology uses self-sufficient
modules (the objects), which contain all the information they require to manipulate
their own data structure.

In this chapter, we will look at the first ColdFusion component within the OOP
design pattern, the Bean.

We will also cover the following topics:

•	 What is a Bean?
•	 The benefits of using a Bean
•	 The requirements for a Bean
•	 Setting and retrieving values from the Object

What is a Bean?
Although the terminology evokes the initial reaction of cooking ingredients or a tin
of food from a supermarket, the Bean is an incredibly important piece of the object-
oriented design pattern.

Building your First Bean

[60]

The term 'Bean' originates from the Java programming language, and for those
developers out there who enjoy their coffee as much as I do, the thought process
behind it will make sense: Java = Coffee = Coffee Bean = Bean.

A Bean is basically the building block for your object. Think of it as a blueprint
for the information you want each object to hold and contain. In relation to other
ColdFusion components, the Bean is a relatively simple CFC that primarily has two
roles in life:

•	 to store information or a collection of values
•	 to return the information or collection of values when required

But what is it really?
Typically, a ColdFusion bean is a single CFC built to encapsulate and store a single
record of data, and not a recordset query result, which would normally hold more
than one record. This is not to say that the information within the Bean should only
be pulled from one record within a database table, or that the data needs to be only a
single string—far from it.

You can include information in your Bean from any source at your disposal;
however, the Bean can only ever contain one set of information.

Your Bean represents a specific entity. This entity could be a person, a car, or a
building. Essentially, any 'single' object can be represented by a bean in terms
of development.

The Bean holds information about the entity it is written for. Imagine we have a Bean
to represent a person, and this Bean will hold details on that individual's name, age,
hair color, and so on. These details are the properties for the entity, and together they
make up the completed Bean for that person.

In reality, the idea of the Bean itself is incredibly similar to a structure. You could
easily represent the person entity in the form of a structure, as follows:

<!---Build an empty structure to emulate a Person entity.--->
<cfset stuPerson	= {
 name = '', age = '',
 hairColor = ''} />

Listing: 3.1 – Creating an entity structure

This seems like an entirely feasible way to hold your data, right? To some extent it
is. You have a structure, complete with properties for the object/entity, wrapped up
into one tidy package.

Chapter 3

[61]

You can easily update the structure to hold the properties for the individual, and
retrieve the information for each property, as seen in the following code example:

<!---Build an empty structure to emulate a Person entity.--->
<cfset stuPerson	= {
 name = '', age = '',
 hairColor = ''} />
<cfdump var="#stuPerson#" label="Person - empty data" />
<!---Update the structure with data and display the output--->
<cfset StructUpdate(
 stuPerson, 'name', 'Matt Gifford') />
<cfset StructUpdate(
 stuPerson, 'hairColor', 'Brown') />

<cfdump var="#stuPerson#" label="Person - data added" />

<cfoutput>
 Name: #stuPerson.name#

 Hair: #stuPerson.hairColor#
</cfoutput>

Listing 3.2 – Populating the entity structure

Although the structure is an incredibly simple method of retaining and accessing
data, particularly when looking at the code, they do not suit the purpose of a
blueprint for an entity very well, and as soon as you have populated the structure it
is no longer a blueprint, but a specific entity.

Building your First Bean

[62]

Imagine that you were reading data from the database and wanted to use the
structure for every person who was drawn out from the query. Sure enough, you
could create a standard structure that was persistent in the Application scope, for
example. You could then loop through the query and populate the structure with the
recordset results. For every person object you wanted, you could run ColdFusion's
built-in Duplicate() function to create a copy of the original 'base' structure, and
apply it to a new variable.

Or perhaps, the structure might need to be written again on every page it is required
in, or maybe written on a separate .cfm page that is included into the template
using cfinclude.

Perhaps over time, your application will grow, requirements will change, and extra
details will need to be stored. You would then be faced with the task of changing and
updating every instance of the structures across your entire application to include
additional keys and values, or remove some from the structure.

This route could possibly have you searching for code, testing, and debugging at
every turn, and would not be the best method to optimize your development time
and to enhance the scalability of your application.

Taking the time to invest in your code base and development practices from the
start will greatly enhance your application, development time, and go some way to
reduce unnecessary headaches caused by spaghetti code and lack of structure.

The benefit of using beans
By creating a Bean for each entity within your application, you have created
a specific blueprint for the data we wish to hold for that entity. The rules of
encapsulation are adhered to, and nothing is hardcoded into our CFC.

We have already seen how our objects are created, and how we can pass variables
and data into them, which can be through the init() method during instantiation or
perhaps as an argument when calling an included function within the component.

Every time you need to use the blueprint for the Person class, you can simply create
an instance of the Bean.

You instantly have a completely fresh new object ready to populate with specific
properties, and you can create a fully populated Person object in just one line of code
within your application.

The main purpose of a Bean in object-oriented development is to capture and
encapsulate a variety of different objects, be they structures, arrays, queries, or
strings for example, into one single object, which is the Bean itself.

Chapter 3

[63]

The Bean can then be passed around your application where required, containing
all of the included information, instead of the application itself sending the many
individual objects around or storing each one in, for example, the Application or
Session scope, which could get messy.

This creates a nicely packaged container that holds all of the information we need to
send and use within our applications, and acts as a much easier way to manage the
data we are passing around.

If your blueprints need updating, for example more properties need to be added
to the objects, you only have one file to modify, the CFC of the Bean itself. This
instantly removes the problematic issues of having to search for every instance or
every structure for your object throughout your entire code base.

A Bean essentially provides you with a consistent and elegant interface, which will
help you to organize your data into objects, removing the need to create, persist, and
replicate ad-hoc structures.

Creating our first Bean
Let's look at creating a Bean for use with the projects table in the database. We'll
continue with the Person Bean as the primary example, and create the CFC to
handle person objects.

An introduction to UML
Before we start coding the component, let's have a quick look at a visual
representation of the object using Unified Modeling Language (UML).

UML is a widely-used method to display, share, and reference objects, Classes,
workflows, and structures in the world of object-oriented programming, which you
will come into contact with during your time with OOP development.

The modeling language itself is incredibly detailed and in-depth, and can express
such a wide array of details and information.

Building your First Bean

[64]

Person object in UML
In this example, let's take a look at the basics of UML and the visual representation of
the Person component that we will create, which looks like this:

At first glances, you can instantly see what variables and functions our
component consists of.

With most UML objects, it is broken into segments for easier digestion. The actual
name of the component is clearly visible within the top section of the diagram.

Chapter 3

[65]

In the second section, we include the variables that will be included within our
object. These have a '-' character in front of them, to indicate that these variables are
private and are hidden within the component (they are not accessible externally).
These variables are followed by the variable type, separated by a colon (':'). This lets
you easily see which variable type is expected. In this example, we can see that all of
the variables are strings.

In the bottom section of the diagram we include the function references, which
contain all methods within the component.

All of the functions are prefixed with a '+' to indicate that they are publically
accessible, and so are available to be called externally from the component itself.

For any functions that require parameters, they are included inside the parenthesis.
If a function returns a value, the returnType is specified after the ':'.

Based upon this UML diagram, let's create the core wrapper for the CFC, and create
the constructor method—the init() function.

Create a new file called Person.cfc and save this file in the following location
within your project folder: com/packtApp/oop/beans.

<cfcomponent displayname="Person" output="false"
 hint="I am the Person Class.">
 <cfproperty name="firstName" type="string" default="" />
 <cfproperty name="lastName" type="string" default="" />
 <cfproperty name="gender" type="string" default="" />
 <cfproperty name="dateofbirth" type="string" default="" />
 <cfproperty name="hairColor" type="string" default="" />

 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 firstName = '', lastName = '', gender= '',
 dateofbirth = '', hairColor = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for the Person
 Class.">
 <cfargument name="firstName" required="true"
 type="String" default="" hint="I am the first name." />
 <cfargument name="lastName" required="true"
 type="String" default="" hint="I am the last name." />
 <cfargument name="gender" required="true"
 type="String" default="" hint="I am the gender." />
 <cfargument name="dateofbirth" required="true"
 type="String" default="" hint="I am the date of birth." />

Building your First Bean

[66]

 <cfargument name="hairColor" required="true"
 type="String" default="" hint="I am the hair color." />
 <cfreturn this />
 </cffunction>
</cfcomponent>

Listing 3.3 - com/packtApp/oop/beans/Person.cfc

Here, we have the init() method for the Person.cfc and the arguments defined
for each property within the object. The bean will hold the values of its properties
within the variables.instance structure, which we have defined above the init()
method as a pseudo-constructor.

What makes a Bean a Bean
We know that a Bean is a CFC representing a specific entity. But what differentiates a
Bean from a normal ColdFusion component?

There are two conventions that a CFC can follow in order to officially declare it as a
Bean, which are:

•	 The class must have a public default/no-argument constructor
•	 The class properties must be accessible to allow easy inspection and

updating of Bean state

A default/no-argument constructor
Looking at the code we have just written, we can see the constructor method has
the arguments required to populate the project Bean entity. However, when we
instantiate the Bean in our code, we may not yet have that information to hand and
we may not know what values to pass into the object to populate the properties.

As such, we have set the required attribute for each argument to required="false",
and have set a default value for each argument based upon its expected type.
For example, all arguments expecting a string have a blank default value, and all
arguments expecting a numeric value have their default value set to "0".

So, although the constructor method does have arguments, they are not required to
be populated upon creation, making this method a 'no-argument constructor', which
conforms to the first requirement for Beans.

Chapter 3

[67]

Easily accessible for introspection
Once the object has been instantiated using the init() method, a structure variable
called "instance" is created within the Variables scope of the CFC. As we have
discovered in Chapter 1, the Variables scope is a local private scope within the
component, and cannot be modified from anywhere except within the CFC itself.

The variables.instance structure will hold data for the Bean's properties, and in
order to access the structure to write data and read values from the Bean we need
two methods for each property within the CFC.

Methods used to write values to properties are commonly referred to as Setters or
Mutators, while methods used to retrieve values from the Bean are known as
Getters or Accessors.

Setters/Mutators
Let's add some setter methods to our Person.cfc so that we can set values within
the object. The methods should be placed underneath the init() method.

<!--- setters /mutators --->
<cffunction name="setFirstName" access="public"
 output="false" hint="I set the first name into the
 variables.instance scope.">
 <cfargument name="firstName" required="true"
 type="String" hint="I am the person's firstName." />
 <cfset variables.instance.firstName = arguments.firstName />
</cffunction>

<cffunction name="setLastName" access="private"
 output="false" hint="I set the last name into the
 variables.instance scope.">
 <cfargument name="lastName" required="true"
 type="String" hint="I am the person's lastName." />
 <cfset variables.instance.lastName = arguments.lastName />
</cffunction>

Listing 3.4 – Adding mutators to Person.cfc

The typical naming convention for a setter method is to call the function
set[Property], replacing [property] with the name of the property within the Bean
you wish to set. In the previous example, we have defined the setFirstName() and
setLastName() functions.

Each function takes one argument, which is the value we want to set the specific
property to, and the arguments are all set to required="true" to ensure we pass
through the values when mutating the Bean.

Building your First Bean

[68]

When you call setFirstName(x) from within the init() method, which we will
see in a later code example, the function will assign the value sent through in the
argument to the firstName key within the variables.instance scope.

The setter functions do not return any information. They are purely used for setting
information, not for reading and supplying back to the user.

Getters/Accessors
Now we have the methods in place to set values within the project Bean, but we
also need to retrieve the information for each specific property, and we do so by
creating one getter method within our CFC for each property. Place these methods
underneath the setter methods defined in your CFC:

<!--- getters / accessors --->
<cffunction name="getFirstName" access="public"
 output="false" hint="I return the first name.">
 <cfreturn variables.instance.firstName />
</cffunction>

<cffunction name="getLastName" access="public"
 output="false" hint="I return the last name.">
 <cfreturn variables.instance.lastName />
</cffunction>

Listing 3.5 – Adding accessors to Person.cfc

Simple and elegant in terms of code and function, the getter methods also follow the
same naming convention as the setter functions, so in the previous example we have
getFirstName() and getLastName() to retrieve the values for those specific
Bean properties.

The getter (or accessor) methods take no arguments. Instead, they simply read the
specific key from the variables.instance structure and return that data back to
the user.

We now have an easy way to interact, amend, and retrieve the properties within the
Bean itself, thanks to the getter and setter methods we have defined. The CFC now
conforms to the second requirement for true Bean status.

Completing our Projects Bean
In our current code for the Person Bean, we have the two methods for getting and
setting the firstName and lastName properties. The CFC needs to set the values of
the properties upon instantiation, so we need to amend the init() method like so:

Chapter 3

[69]

<cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for the Person
 Class.">
 <cfargument name="firstName" required="true" type="String"
 default="" hint="I am the first name." />
 <cfargument name="lastName" required="true" type="String"
 default="" hint="I am the last name." />
 <cfargument name="gender" required="true" type="String"
 default="" hint="I am the gender." />
 <cfargument name="dateofbirth" required="true" type="String"
 default="" hint="I am the date of birth." />
 <cfargument name="hairColor" required="true" type="String"
 default="" hint="I am the hair color." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 setFirstName(arguments.firstName);
 setLastName(arguments.lastName);
 </cfscript>
 <cfreturn this />
</cffunction>

Listing 3.6 – Setting the variables within the constructor

You can see that we have placed the setFirstName() and setLastName() methods
into the constructor function. These will set the relevant variables.instance
properties with the values sent in through the arguments, which will use the default
values if no arguments are specified.

Now, let's add the rest of the getter and setter methods to the CFC to complete the
Bean, which should look like this:

<cfcomponent displayname="Person" output="false"
 hint="I am the Person Class.">
 <cfproperty name="firstName" type="string" default="" />
 <cfproperty name="lastName" type="string" default="" />
 <cfproperty name="gender" type="string" default="" />
 <cfproperty name="dateofbirth" type="string" default="" />
 <cfproperty name="hairColor" type="string" default="" />

 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 firstName = '', lastName = '', gender = '',
 dateofbirth = '', hairColor = ''
 } />

 <cffunction name="init" access="public" output="false"

Building your First Bean

[70]

 returntype="any" hint="I am the constructor method for the Person
 Class.">
 <cfargument name="firstName" required="true" type="String"
 default="" hint="I am the first name." />
 <cfargument name="lastName" required="true" type="String"
 default="" hint="I am the last name." />
 <cfargument name="gender" required="true" type="String"
 default="" hint="I am the gender." />
 <cfargument name="dateofbirth" required="true" type="String"
 default="" hint="I am the date of birth." />
 <cfargument name="hairColor" required="true" type="String"
 default="" hint="I am the hair color." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 setFirstName(arguments.firstName);
 setLastName(arguments.lastName);
 setGender(arguments.gender);
 setDateOfBirth(arguments.dateofbirth);
 setHairColor(arguments.hairColor);
 </cfscript>
 <cfreturn this />
 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getFirstName" access="public"
 output="false" hint="I return the first name.">
 <cfreturn variables.instance.firstName />
 </cffunction>

 <cffunction name="getLastName" access="public"
 output="false" hint="I return the last name.">
 <cfreturn variables.instance.lastName />
 </cffunction>

 <cffunction name="getGender" access="public"
 output="false" hint="I return the gender.">
 <cfreturn variables.instance.gender />
 </cffunction>

 <cffunction name="getDateOfBirth" access="public"
 output="false" hint="I return the date of birth.">
 <cfreturn variables.instance.dateofbirth />
 </cffunction>

 <cffunction name="getHairColor" access="public"

Chapter 3

[71]

 output="false" hint="I return the hair color.">
 <cfreturn variables.instance.hairColor />
 </cffunction>

 <!--- setters /mutators --->
 <cffunction name="setFirstName" access="public"
 output="false" hint="I set the first name into the
 variables.instance scope.">
 <cfargument name="firstName" required="true"
 type="String" hint="I am the person's firstName." />
 <cfset variables.instance.firstName = arguments.firstName />
 </cffunction>

 <cffunction name="setLastName" access="public"
 output="false" hint="I set the last name into the
 variables.instance scope.">
 <cfargument name="lastName" required="true"
 type="String" hint="I am the person's lastName." />
 <cfset variables.instance.lastName = arguments.lastName />
 </cffunction>

 <cffunction name="setGender" access="public"
 output="false" hint="I set the gender into the
 variables.instance scope.">
 <cfargument name="gender" required="true"
 type="String" hint="I am the person's gender." />
 <cfset variables.instance.gender = arguments.gender />
 </cffunction>

 <cffunction name="setDateOfBirth" access="public"
 output="false" hint="I set the dateofbirth into the
 variables.instance scope.">
 <cfargument name="dateofbirth" required="true"
 type="String" hint="I am the person's dateofbirth." />
 <cfset variables.instance.dateofbirth =
 arguments.dateofbirth />
 </cffunction>

 <cffunction name="setHairColor" access="public"
 output="false" hint="I set the hairColor into the
 variables.instance scope.">
 <cfargument name="hairColor" required="true"
 type="String" hint="I am the person's hairColor." />
 <cfset variables.instance.hairColor = arguments.hairColor />
 </cffunction>
</cfcomponent>

Building your First Bean

[72]

Listing 3.7 – A complete Person.cfc

Listing 3.7 contains a complete Person component. All properties now have a
getter and setter method. We have also added all required setter methods into the
constructor to set variables upon instantiation.

It may not look as clean and tidy as the project structure code we had looked at
previously in this chapter, but the Bean is properly encapsulated and will allow you
to easily update and get your data from the object with minimal fuss, and any future
updates required for the object will only need to be written in one place—the Person
CFC itself.

Calling our project Bean
We have already ensured that our Bean matches one of the conventions and that it is
a no-argument constructor. We can create the object without sending any arguments
to the init() method, as follows:

<cfscript>
 // Instantiate the Person object
 objPerson = createObject('component',
 'com.packtApp.oop.beans.Person').init();
</cfscript>

Listing 3.8 – Instantiating the object

With the Person Bean now created, we can send data into the object.

As the values are being stored in the Variables scope within the CFC, we have
no way of accessing this scope directly from outside of the component. To make
life a little easier when it comes to debugging the values stored in the variables.
instances structure, let's add the following method to the end of our Person.cfc
file, before the closing </cfcomponent> tag:

<!--- utils --->
<cffunction name="getMemento" access="public"
 output="false" hint="I return a dumped struct of the
 variables.instance scope.">
 <cfreturn variables.instance />
</cffunction>

Listing 3.9 – getMemento() method for Person.cfc

This getMemento() method will give us the ability to output the variables.
instance structure onto our .cfm template so that we can see the values currently
stored within it.

Chapter 3

[73]

We can use the function as the one shown in the following example, which will
provide us with a visual output of the current values within the Bean:

<cfscript>
 // Instantiate the Person object
 objPerson = createObject('component',
 'com.packtApp.oop.beans.Person').init();
</cfscript>
<!--- View the content of the variables.instance scope using the
 getMemento() method--->
<cfdump var="#objPerson.getMemento()#" label="Person -
 variables.instance" />

Listing 3.10 – Viewing the variables.instance data

The returned output from the getMemento() method shows us that, as we already
knew, the properties within the object are as of yet unpopulated and simply hold the
default values as defined in the constructor method.

Populating the Bean
Beans are wonderful things. They can be populated by data in the FORM or URL
scopes, or from data drawn from a query recordset. We will be exploring these
options later in the book when we look into more code examples.

For now, let's populate some of the properties using the setter functions we
have written.

Copy the following code to pass variables into the properties within the Bean, and
we'll run the getMemento() method one more time to test the results:

<cfscript>
 // Instantiate the Person object
 objPerson = createObject('component',
 'com.packtApp.oop.beans.Person').init();
</cfscript>

Building your First Bean

[74]

<!---View the content of the variables.instance scope using the
 getMemento() method--->
<cfdump var="#objPerson.getMemento()#"label="Person -
 variables.instance" />
<cfscript>
 objPerson.setFirstName('Gary');
 objPerson.setLastName('Brown');
 objPerson.setGender('Male');
 objPerson.setHairColor('Brown');
 objPerson.setDateOfBirth('01/04/1979');
</cfscript>
<!---View the content of the variables.instance scope using the
 getMemento() method--->
<cfdump var="#objPerson.getMemento()#" label="Person -
 populated variables.instance" />

Listing 3.11 – Populating the Person object

From the output in the second structure, you can see that the values have
successfully been inserted into the variables.instance structure.

Read/Write Bean
The types of Bean we have written in this chapter's code examples are also thought
of as read/write Beans.

A read/write Bean has the setter/mutator methods set to public. Our Person object
UML diagram had every function set to public access, which was visible by the '+'
before each function name. This means that a value of any property within the object
can be changed outside of the init() method.

Chapter 3

[75]

For example, once we have instantiated our object on our .cfm template page, we
can change property values as we need to, like so:

<cfscript>
 // Instantiate the Person object
 objPerson = createObject('component',
 'com.packtApp.oop.beans.Person').init();
</cfscript>
<!---View the content of the variables.instance scope using the
 getMemento() method--->
<cfscript>
 objPerson.setFirstName('Matt');
 objPerson.setLastName('Tubbs');
 objPerson.setGender('Male');
 objPerson.setHairColor('Brown');
 objPerson.setDateOfBirth('01/04/1979');
</cfscript>
<cfdump var="#objPerson.getMemento()#" label="Person -
 populated variables.instance" />
<cfscript>
 objPerson.setFirstName('James');
 objPerson.setLastName('Crockett');
 objPerson.setGender('Male');
 objPerson.setHairColor('Blonde');
 objPerson.setDateOfBirth('29/02/1964');
</cfscript>
<!---View the content of the variables.instance scope using the
 getMemento() method--->
<cfdump var="#objPerson.getMemento()#" label="Person -
 amended variables.instance" />

Listing 3.12 – Populating the read-write Bean

In this code listing, we have instantiated our Bean object, inserted some data using
the set methods, and dumped the value of the variables.instance scope onto
the page.

Building your First Bean

[76]

We then call the setter methods once more to assign values to those properties within
the object, and run the dump method again to view the updated properties, the
output of which is shown as follows:

Read-only Bean
An alternative Bean type is the read-only Bean. This differs from the read/write
Bean as no setter/mutator method can be called directly from any external page.

This is achieved by setting the access attribute for the setter methods to private,
as follows:

<cffunction name="setFirstName" access="private" output="false"
 hint="I set the first name into the variables.instance scope.">
 <cfargument name="firstName" required="true" type="String"
 hint="I am the person's firstName." />
 <cfset variables.instance.firstName = arguments.firstName />
</cffunction>

Listing 3.13 – Amending a set method to private access

If we ran the same code in our previous example, we would receive the following
error on screen:

Chapter 3

[77]

By setting the access attribute on the setter methods to private, the only way to
alter the values of the object's properties is to send argument values through the
component's init() constructor method:

<cfscript>
 // Instantiate the Person object
 objPerson = createObject('component',
 'com.packtApp.oop.beans.Person').init(
 firstName='Matt', lastName='James', gender='Male',
 hairColor='Brown', dateofbirth='01/04/1979'
);
</cfscript>
<!---View the content of the variables.instance scope using the
 getMemento() method--->
<cfdump var="#objPerson.getMemento()#" label="Person -
 populated variables.instance" />

Listing 3.14 – Populating the read-only Person.cfc

The code within the cfscript block is almost identical to the previous example. The
main difference is the way the data is being sent into the object.

Here, you can see that the values are being sent in through the init() method
as name/value pairs. The values are then passed to the arguments within the
constructor method and the setter/mutator functions update the properties within
the variables.instance structure.

The getter/accessor functions remain as access="public" as we need to be able
to access those methods and retrieve values from the object on any external page or
process for use in our application.

Helpful objects
In our current Person object we simply return the variables as they currently exist
within the object.

Your components do not have to simply be static in that respect, and can easily
perform work for you using the data it currently holds. This could include
mathematical calculations, recordset queries, or string concatenations using the
existing information.

Let's customize our Person.cfc and include some new methods that will enhance
the object and allow us to obtain more information from the Bean.

Building your First Bean

[78]

We already hold the first and last name values within the component, and we can
access these individually using the getFirstName() and getLastName()
methods respectively.

Let's create a method to return the complete full name of the person by concatenating
the string values within a new method.

We also have access to the dateofbirth variable. Let's also add a new method that
will calculate the person's current age in years.

Listing 3.15 now shows the revised complete Person.cfc, which includes two
helper methods:

<cfcomponent displayname="Person" output="false"
 hint="I am the Person Class.">
 <cfproperty name="firstName" type="string" default="" />
 <cfproperty name="lastName" type="string" default="" />
 <cfproperty name="gender" type="string" default="" />
 <cfproperty name="dateofbirth" type="string" default="" />
 <cfproperty name="hairColor" type="string" default="" />
 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 firstName = '', lastName = '', gender = '',
 dateofbirth = '', hairColor = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for the Person
 Class.">
 <cfargument name="firstName" required="true" type="String"
 default="" hint="I am the first name." />
 <cfargument name="lastName" required="true" type="String"
 default="" hint="I am the last name." />
 <cfargument name="gender" required="true" type="String"
 default="" hint="I am the gender." />
 <cfargument name="dateofbirth" required="true" type="String"
 default="" hint="I am the date of birth." />
 <cfargument name="hairColor" required="true" type="String"
 default="" hint="I am the hair color." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 setFirstName(arguments.firstName);
 setLastName(arguments.lastName);
 setGender(arguments.gender);
 setDateOfBirth(arguments.dateofbirth);
 setHairColor(arguments.hairColor);
 </cfscript>

Chapter 3

[79]

 <cfreturn this />
 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getFirstName" access="public"
 output="false" hint="I return the first name.">
 <cfreturn variables.instance.firstName />
 </cffunction>

 <cffunction name="getLastName" access="public"
 output="false" hint="I return the last name.">
 <cfreturn variables.instance.lastName />
 </cffunction>

 <cffunction name="getGender" access="public"
 output="false" hint="I return the gender.">
 <cfreturn variables.instance.gender />
 </cffunction>

 <cffunction name="getDateOfBirth" access="public"
 output="false" hint="I return the date of birth.">
 <cfreturn variables.instance.dateofbirth />
 </cffunction>

 <cffunction name="getHairColor" access="public"
 output="false" hint="I return the hair color.">
 <cfreturn variables.instance.hairColor />
 </cffunction>

 <!--- setters /mutators --->
 <cffunction name="setFirstName" access="public"
 output="false" hint="I set the first name into the
 variables.instance scope.">
 <cfargument name="firstName" required="true"
 type="String" hint="I am the person's firstName." />
 <cfset variables.instance.firstName = arguments.firstName />
 </cffunction>

 <cffunction name="setLastName" access="public"
 output="false" hint="I set the last name into the
 variables.instance scope.">
 <cfargument name="lastName" required="true"
 type="String" hint="I am the person's lastName." />
 <cfset variables.instance.lastName = arguments.lastName />
 </cffunction>

Building your First Bean

[80]

 <cffunction name="setGender" access="public"
 output="false" hint="I set the gender into the
 variables.instance scope.">
 <cfargument name="gender" required="true"
 type="String" hint="I am the person's gender." />
 <cfset variables.instance.gender = arguments.gender />
 </cffunction>

 <cffunction name="setDateOfBirth" access="public"
 output="false" hint="I set the dateofbirth into the
 variables.instance scope.">
 <cfargument name="dateofbirth" required="true"
 type="String" hint="I am the person's dateofbirth." />
 <cfset variables.instance.dateofbirth =
 arguments.dateofbirth />
 </cffunction>

 <cffunction name="setHairColor" access="public"
 output="false" hint="I set the hairColor into the
 variables.instance scope.">
 <cfargument name="hairColor" required="true"
 type="String" hint="I am the person's hairColor." />
 <cfset variables.instance.hairColor = arguments.hairColor />
 </cffunction>

 <cffunction name="getFullName" access="public"
 output="false" hint="I return the full name of the person.">
 <cfset var strFullName = '' />
 <!---Concatenate the string values to return the full name.
 Here, we call the variables.instance values directly.
 You could also call the get methods, like so:
 getFirstName() & ' ' & getLastName()--->
 <cfset strFullName = variables.instance.firstName & ' ' &
 variables.instance.lastName />
 <cfreturn strFullName />
 </cffunction>

 <cffunction name="getAgeInYears" access="public"
 output="false" hint="I work out the age of the person in
 years based upon the current date.">
 <cfset var strAgeInYears = '' />
 <!---Calculate the difference in years using the person's
 stored date of birth and the current year.--->
 <cfset strAgeInYears = dateDiff('yyyy', getDateOfBirth(),
 now()) />
 <cfreturn strAgeInYears />

Chapter 3

[81]

 </cffunction>

 <!--- utils --->
 <cffunction name="getMemento" access="public"
 output="false" hint="I return a dumped struct of the
 variables.instance scope.">
 <cfreturn variables.instance />
 </cffunction>
</cfcomponent>

Listing 3.15 – Adding useful 'helper' methods into Person.cfc

Thanks to the additional methods within the component, we are able to easily obtain
the person's full name and current age without having to perform any calculations
outside of the object itself.

Revising our UML diagram for the Person class, we can add in the two new
methods, and ensure that the mutator/setter methods are set to private.

Building your First Bean

[82]

Implicit accessors
With the evolution of ColdFusion 9 we are able to write the same powerful,
functional components, but with less code. In some instances, this may be due to
the fact that we no longer need to write our core components in tag format, but also
due to the powerful ability to have the accessor/getter and mutator/setter methods
generated for you if required.

This is achieved from the accessors attribute within the main component tag.
Following is a ColdFusion 9 specific version of our complete Person component:

<cfcomponent displayname="Person" output="false"
 hint="I am the Person Class." accessors="true">
 <cfproperty name="firstName" type="string"
 default="" setter="false" />
 <cfproperty name="lastName" type="string"
 default="" setter="false" />
 <cfproperty name="gender" type="string"
 default="" setter="false" />
 <cfproperty name="dateofbirth" type="string"
 default="" setter="false" />
 <cfproperty name="hairColor" type="string"
 default="" setter="false" />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for the
 Person Class.">
 <cfargument name="firstName" required="true" type="String"
 default="" hint="I am the first name." />
 <cfargument name="lastName" required="true" type="String"
 default="" hint="I am the last name." />
 <cfargument name="gender" required="true" type="String"
 default="" hint="I am the gender." />
 <cfargument name="dateofbirth" required="true" type="String"
 default="" hint="I am the date of birth." />
 <cfargument name="hairColor" required="true" type="String"
 default="" hint="I am the hair color." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 variables.firstName = arguments.firstName;
 variables.lastName = arguments.lastName;
 variables.gender = arguments.gender;
 variables.dateofbirth = arguments.dateofbirth;
 variables.hairColor = arguments.hairColor;
 </cfscript>
 <cfreturn this />
 </cffunction>

Chapter 3

[83]

 <!--- public methods --->
 <cffunction name="getFullName" access="public" output="false"
 hint="I return the full name of the person.">
 <cfset var strFullName = '' />
<!---Concatenate the string values to return the full name.
 Here, we call the variables values directly.
 You could also call the get methods, like so:
 getFirstName() & ' ' & getLastName()--->
 <cfset strFullName = variables.firstName & ' ' &
 variables.lastName />
 <cfreturn strFullName />
 </cffunction>

 <cffunction name="getAgeInYears" access="public" output="false"
 hint="I work out the age of the person in years
 based upon the current date.">
 <cfset var strAgeInYears = '' />
 <cfset strAgeInYears = dateDiff('yyyy', getDateOfBirth(),
 now()) />
 <cfreturn strAgeInYears />
 </cffunction>

 <cffunction name="getMemento" access="public" output="false"
 hint="I return the variables scope.">
 <cfreturn variables />
 </cffunction>
</cfcomponent>

Listing 3.16 – Using Implicit Accessors in Person.cfc

The first thing you may notice is the length of the component content in comparison
to our previous version in Listing 3.15, which is now much shorter. You will also
notice that there are no mutator/setter methods and no accessor/getter methods that
deal with the property values directly. We do have our 'custom' methods as well as
the init() constructor, but no other methods.

This is due to the accessors attribute, set at the top of the document. By including
this attribute and setting the value to true, the getters and setters are generated
for you.

By generating all methods this way, they are all set to public access, meaning that all
setter methods would be available to access outside of the component; perfect for a
read/write component, as we have already seen.

Building your First Bean

[84]

In our previous component in Listing 3.15, we created a read-only component, and
opted to set all of our property values within the constructor method. This effectively
removed the need for any setter methods at all, although we kept them in.

In Listing 3.16, both the getter and setter methods are generated automatically.
To convert this component into a read-only object and remove the setter methods
completely, we can restrict the setter methods from being created as per our example
by setting the setter="false" attribute within each cfproperty tag. This tells
ColdFusion not to generate any setters for these properties.

Following this, our Person.cfc UML diagram would now look as follows:

When using the automatically-generated methods, the property values are stored
and retrieved from the variables scope itself, whereas in our hand-written example,
we were storing the values within variables.instance. To reflect this change, the
code in Listing 3.16 was amended to reference only the variables scope, and not the
variables.instance structure.

Listing 3.17 shows the same Person ColdFusion component using the implicit getters,
written in pure script syntax.

Chapter 3

[85]

component displayname="Person" hint="I am the Person Class."
 accessors="true"
{
 property name="firstName" type="string" default="" setter="false";
 property name="lastName" type="string" default="" setter="false";
 property name="gender" type="string" default="" setter="false";
 property name="dateofbirth" type="string" default=""
 setter="false";
 property name="hairColor" type="string" default="" setter="false";
 public any function init(
 required string firstName 	 = "", required string lastName =
"",
 required string gender = "", required string dateofbirth = "",
 required string hairColor	= "")
 output = "false" hint="I am the constructor method for the
 Person Class."
 {
 /*
 Store the values into the variables scope.
 We do not have mutator/setter methods
 within this component, but we can set the
 values into the variables scope directly.
 */
 variables.firstName 	 = arguments.firstName;
 variables.lastName		 = arguments.lastName;
 variables.gender		 = arguments.gender;
 variables.dateofbirth 	 = arguments.dateofbirth;
 variables.hairColor		 = arguments.hairColor;
 return (this);
 }
 public string function getFullName()
 output="false" hint="I return the full name of the person."
 {
 local.strFullName = variables.firstName & ' ' &
 variables.lastName;
 return local.strFullName;
 }
 public string function getAgeInYears()
 output="false" hint="I work out the age of the person in years
 based upon the current date."
 {
 local.strAgeInYears = dateDiff('yyyy', getDateOfBirth(), now());
 return local.strAgeInYears;
 }
 public any function getMemento()

Building your First Bean

[86]

 output="false" hint="I return the variables scope."
 {
 return variables;
 }
}

Listing 3.17 – Person.cfc written in script syntax (ColdFusion 9 only)

Summary
In this chapter, we have introduced the Bean into our ColdFusion object-oriented
programming design pattern, and have understood that a Bean is a blueprint of an
object, which we can create and populate at any time, and that this object represents
a single record of data, or a specific entity.

By following the conventions in this chapter to create your ColdFusion Beans, using
the get/set methods to access and populate your Bean's properties does require a
little more typing to write the functions for each property.

However, this time will be well-spent when the application grows and becomes more
complex. The benefits of writing your code with an object-oriented approach will
soon become apparent, and they will strengthen when we introduce a framework to
handle our code and objects for us, which we will cover later in this book.

Other topics we have covered in this chapter are:

•	 The benefit of using Beans
•	 Accessor/Getter methods
•	 Mutator/Setter methods
•	 Building and populating a Bean
•	 Implicit getters/setters in ColdFusion 9

Inheritance and
Object-Oriented Concepts

Now that we have built our components and looked at creating Bean objects, we can
start to delve a little deeper and have a look at some of the core concepts involved in
object-oriented programming.

The world of OOP can be laden with jargon, keywords, and concepts, some of which
may be obvious. Others may be easily misunderstood or simply confusing.

In this chapter, we will take a look at a few of the key concepts that you may well
experience within an object-oriented application, together with code examples to
assist with understanding these ideas, starting with the concept of inheritance.

We will also look at the following:

•	 Polymorphism
•	 Composition
•	 Aggregation

What is Inheritance?
Inheritance is one of the primary concepts of object-oriented programming, and is
when one object (a child) extends another object (the parent). By extending the parent
object, the child object inherits the properties and methods of the parent object.

By using the concept of inheritance you can create a hierarchy of objects, beginning
with general things and progressing to very specific objects. Let's use a real-world
example, and envisage an e-commerce application.

Inheritance and Object-Oriented Concepts

[88]

Let's imagine that initially our online store sells only books, and as such we only
have one single product object, Book.cfc. This component contains the relevant
properties accessor and mutator methods to read and write our information relating
to our book products.

The UML diagram of the object could look something like this:

At the moment, this Book object is perfectly suited for our application. It contains
exactly the right properties we need to provide information about our books. It
would also be incredibly easy to amend the object if we needed to add any additional
properties for the product, for example, a barcode or ISBN number.

Now, imagine that our business has really taken off and we've decided to enhance
our shopping site and sell different products; we now want to branch out and sell
not only books, but also DVDs.

It's fantastic news that our business is doing so well, and that we are expanding to
offer more products to our customers. However, this does have an immediate impact
on our underlying application and, more importantly, the product objects.

Chapter 4

[89]

Once again, let's view a UML diagram of our new DVD object to help visualize
the issue:

As you can see more or less straight away, there are major similarities between the
two products and properties that are common to both, namely the title, description,
and price for each product.

Of course, there is nothing to stop us from simply creating this new object as
pictured in the UML diagram, and having the Book and DVD objects containing
similar methods and properties within our application. We are still able to set and
read the properties for our products, and pass them throughout our application as
bean objects.

Inheritance and Object-Oriented Concepts

[90]

Avoiding code duplication
However, let's now imagine that we have broadened our product levels once more and
we now sell CDs, Calendars, electronic gadgets, and so on from our web application.

We have already seen duplicated code when we introduced our second product
object. The following diagram is an example of our revised product range:

Excluding any extra methods and properties that the individual products may
have in the previous product visualization, we can now clearly see the similarities
between the products; they all share title, description, and price properties and
methods. To this extent, we can now see the highlighted levels of code duplication
within our application.

To avoid this code duplication and to help streamline the structure of our application
where possible, we can start to utilize the concept of inheritance.

We can create a brand new Base class (or super-component), into which any
common/shared code can be placed. Any properties or methods within this new
component would then be made available to the more specific classes (also known as
subclasses) as they inherit the super-component.

Chapter 4

[91]

Inheriting our products
We have seen from our earlier UML diagrams that our products all contain similar
methods. We will ultimately place these methods within our new Base product class,
and keep the more specific product methods within their individual objects.

Let's start by looking at another simple UML diagram to help understand and
visualize this inheritance.

You can see the clear separation of methods (and inherently their properties) from
our products that will be placed into our Product Base class. The remaining methods
that relate to the specific products stay within that product's specific object.

The concept of inheritance is also clearly visualized in the previous diagram in the
form of the clear arrowheads connecting the objects. We can now say that the DVD
object will inherit the Product object, and the Book object will also inherit the Product
Base class.

Create a new file called Product.cfc and place it within the following location: com/
packtApp/oop/beans. Add the code from Listing 4.1 into the component to create
our Base class.

<cfcomponent displayname="Product"
 output="false"
 hint="I am the Product Base Class.">

 <cfset variables.instance = structNew() />

 <cffunction name="init" access="public"
 output="false" returntype="any"
 hint="I am the constructor method for
 the Product Base class.">

 <cfargument name="name" required="true"
 type="String" default=""

Inheritance and Object-Oriented Concepts

[92]

 hint="I am the name of the product." />

 <cfargument name="description" required="true"
 type="String" default=""
 hint="I am a description for the product." />

 <cfargument name="price" required="true"
 type="String" default=""
 hint="I am the price." />

 <cfscript>
 variables.instance.name
 = arguments.name;

 variables.instance.description
 = arguments.description;

 variables.instance.price
 = arguments.price;
 </cfscript>

 <cfreturn this />

 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getName" access="public"
 output="false"
 hint="I return the name of the product.">
 <cfreturn variables.instance.name />
 </cffunction>

 <cffunction name="getDescription" access="public"
 output="false"
 hint="I return a decsription of the product.">
 <cfreturn variables.instance.description />
 </cffunction>

 <cffunction name="getPrice" access="public"
 output="false"
 hint="I return the price of the product.">
 <cfreturn variables.instance.price />
 </cffunction>

</cfcomponent>

Chapter 4

[93]

Listing 4.1 - Creating our Product Base class

The code in Listing 4.1 contains the complete code for the Product Base class, which
contains four public methods: the init() constructor method, and the three getter/
accessor methods to return the values of the object's properties: name, description,
and price respectively.

This particular example is a read-only bean as we haven't specified any publicly
accessible setter/mutator methods, although you can add these if you wish, as we
had included these in the previous chapter.

Now that we have our Base class (or super-component), we need to redefine our
Book object to inherit the methods and properties from our Product.cfc.

ColdFusion provides an incredibly simple way to specify object inheritance within
your components, which is through the use of the extends attribute within the
cfcomponent tag.

The following code in Listing 4.2 shows the core of Book.cfc, which now inherits the
Product Base class.

<cfcomponent displayname="Book"
 output="false"
 hint="I am the Book Class."
 extends="Product">

 <cfproperty name="author" type="string" default="" />
 <cfproperty name="totalPages" type="string" default="" />
 <cfproperty name="name" type="string" default="" />
 <cfproperty name="description" type="string" default="" />
 <cfproperty name="price" type="string" default="" />

 <cfset variables.instance = structNew() />

</cfcomponent>

Listing 4.2 – Inheriting our Base class in our Book object

With thanks to the single extends="" attribute, Book.cfc will now have the ability
to inherit from our Product super-component.

Let's now add our init() constructor method into the Book component.

The code in Listing 4.3 shows our constructor method, which we'll call when
instantiating our Book object.

Inheritance and Object-Oriented Concepts

[94]

As we have seen in previous chapters, we are passing the parameters into the init()
method, which we will use to set the values of the properties.

You can see that we are directly setting the values for the author and totalPages
properties into the variables.instance structure within the Book component.

<cffunction name="init" access="public"
 output="false" returntype="any"
 hint="I am the constructor method
 for the Book Class.">

 <cfargument name="author" required="true"
 type="String" default=""
 hint="I am the author of the book." />

 <cfargument name="totalPages" required="true"
 type="String" default=""
 hint="I am the total number of
 pages within the book." />

 <cfargument name="name" required="true"
 type="String" default=""
 hint="I am the name of the book." />

 <cfargument name="description" required="true"
 type="String" default=""
 hint="I am a description for the book." />

 <cfargument name="price" required="true"
 type="String" default=""
 hint="I am the price." />

 <cfscript>
 // Set the values of the Book-specific properties
 variables.instance.author
 = arguments.author;

 variables.instance.totalPages
 = arguments.totalPages;

 /*
 Run the constructor method within the Base Product class
 Here, we use the super prefix to
 override the Book init() method and
 to use the constructor within the Base class.

Chapter 4

[95]

 */
 super.init(
 name = arguments.name,
 description = arguments.description,
 price = arguments.price
);
 </cfscript>

 <cfreturn this />

</cffunction>

<!--- getters / accessors --->
<cffunction name="getAuthor" access="public"
 output="false"
 hint="I am the author.">
 <cfreturn variables.instance.author />
</cffunction>

<cffunction name="getTotalPages" access="public"
 output="false"
 hint="I am the total number of
 pages within the book.">
 <cfreturn variables.instance.totalPages />
</cffunction>

Listing 4.3 – Including the init() constructor

The Super keyword
What is important to note in the prior code listing is the process by which we set the
values for the properties within the Base class.

Overriding methods
When using the concept of inheritance within our object-oriented application, the
child objects (or subtypes) inherit all of the methods and properties contained within
the parent (super component or Base class), as we have previously mentioned.

If a child object already contains a method with the same name as one written within
the Base class, the method within the child object is used, overriding that from
the parent object.

Inheritance and Object-Oriented Concepts

[96]

In our current code, both the Book child component and the Product parent
component contain an init() constructor method, both of them used to set the
values of the properties within each object.

However, although the Book object inherits the methods from the Product class,
if we were to call objBook.init() to instantiate our object, only the constructor
method from the Book component would be run.

We still need to run the init() method within the Product parent class and we are
still able to call the overridden method by using the super prefix, as seen in Listing
4.3, which now allows access to the method contained within the parent object.

As the constructor method within the Product Base class requires the three
arguments, we are able to then pass them through using the super keyword.

Instantiating our products
We can create as many child objects as required to fulfill our many different products
in similar fashion to the code examples for the Book object.

In the following code examples, we have the Book and DVD components, both of
which extend the Product Base class.

To populate the objects, we simply need to instantiate the components and send
through the parameters, as seen in Listing 4.4.

<cfset objBook =
 createObject('component',
 'com.packtApp.oop.beans.Book')
 .init(
 author = 'John Farrar',
 totalPages = '382',
 name = 'ColdFusion 9 Developer Tutorial',
 description = 'Create robust professional web
 applications with ColdFusion',
 price = '30.99'
) />

<cfdump var="#objBook#" />

<cfset objDVD =
 createObject('component',
 'com.packtApp.oop.beans.DVD')
 .init(
 director = 'Steven Iceberg',

Chapter 4

[97]

 duration = '220 minutes',
 name = 'Raising Wisconsin',
 description = 'One man against the world.',
 price = '14.75'
) />

<cfdump var="#objDVD#" />

Listing 4.4 – Instantiating our product objects

The resulting output from the code in Listing 4.4 clearly shows the population of the
properties within not only the child component, but also the parent component, as
you can see in the following image:

The three shared properties contained within the Product Base class are populated,
as are the values of the properties relating to the individual product object.

Inheritance and Object-Oriented Concepts

[98]

The inheritance hierarchy
The concept of inheritance displays an effective method of sharing related code
across numerous components.

Although we are free to use the option of the extends attribute when writing our
ColdFusion components to inherit and use methods from other components (in fact,
we use the process in Chapter 7 to share a single common method amongst multiple
components), in the world of object-oriented programming we need to follow a
few specific guidelines to ensure we are implementing inheritance and not merely
sharing code.

Specialization
An easy way to understand specialization is to visualize the children and parent
objects as a ladder, where each rung is a level of objects.

In our e-commerce application, we could use the following diagram:

In the previous image, we have three tiers of objects. At the top is the parent object
or super-component. If were to move from the top tier travelling down our object
hierarchy, each level we reach contains an object that is a more specialized version of
the one before it.

For example, Book, CD, and DVD are more specialized versions of the Product object.

Chapter 4

[99]

We can add x amount of levels to our hierarchy, and continue to create more
specialized objects, as seen here. E-book and Paperback are more specialized
versions of our Book object. With every layer we navigate downwards, we create a
more specific object.

Likewise, this works in reverse, moving from the bottom of the structure to the top.
As we travel up our object ladder, every component we see is a more generalized
version of its predecessor. Book is a more generalized version of e-book and
Paperback. Product is a more generalized version of our Book, CD, and DVD objects.

And so, true inheritance in OOP terms must imply specialization.

The "IS A" relationship
Another method to test for true inheritance in terms of object-oriented programming
is to be able to define a correct "IS A" relationship between the components. Looking
at our application structure, for example, we can say that:

•	 Book IS A Product
•	 CD IS A Product, as is DVD
•	 eBook IS A Book
•	 Paperback IS A Book

Although you may be using the extends attribute to inherit methods and properties
from other components, if you can confirm that your object structure and hierarchy
match these two criteria, you can happily say you have incorporated true inheritance
into your applications.

Polymorphism
Polymorphism is another important concept in the world of object-oriented
programming, and is relatively simple to understand.

Polymorphism occurs as a side effect of inheritance. Essentially, it means that you
can treat a child object and its inherited methods and properties in exactly the same
way you would treat the parent object's methods and properties.

Consider the following code example, in which we output the name property of each
product using the objects we have instantiated in Listing 4.4.

<cfoutput>
 Book Name: #objBook.getName()#

 DVD Name: #objDVD.getName()#
</cfoutput>

Inheritance and Object-Oriented Concepts

[100]

Listing 4.5 – Displaying each product name

All of our child objects inherited the getName() method from within our parent
object, the Product Base class. In the previous code example, each child object calls
the same inherited method, but returns a different result for each call.

Essentially, this means that the inherited method is polymorphic, as it behaves in
exactly the same manner for every object as it does for its parent.

Composition
The next basic concept of object-oriented programming to introduce is that
of composition.

Composition is the concept that an object cannot exist without its composite parts. In
essence, it is the process of creating an object from a combination of other objects.

A common way to show this example is in the form of a car. Many objects go into
making a car. Some of them are 'optional extras' and trimmings from the dealership
such as a cup holder or satellite navigation system, whereas others are crucial for the
existence of the car, such as an engine or wheels.

The following UML diagram provides another helpful visualization of composition:

Composition is represented in UML as a filled diamond shape and a solid black line.

An engine on its own is just an engine. In true object-oriented practices, as an object
it cannot exist without the car such as its parent object. Similarly, a car is an object,
but is nothing without an engine.

On their own, these objects are not of much use. Combining them together, the
individual components compose an object that is incredibly useful and useable.

The "HAS A" Relationship
One method of confirming you have true composition is again checking the
relationship between the components.

Chapter 4

[101]

Simply referred to as a "HAS A" relationship, in this example a car "HAS A" engine.
An engine does not have a car.

The following code contains the entire Car object component. Create a new file called
Car.cfc and save it to the following directory: com/packtApp/oop/beans. Insert the
code from Listing 4.6 into Car.cfc.

<cfcomponent displayname="Car"
 output="false"
 hint="I am the Car Class.">

 <cfproperty name="engine" type="any" default="" />

 <cfset variables.instance = structNew() />

 <cffunction name="init" access="public"
 output="false" returntype="any"
 hint="I am the constructor method
 for the Car Class.">

 <cfset variables.instance.engine =
 createObject('component', 'engine') />

 <cfreturn this />

 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getEngine" access="public"
 output="false" hint="I return the engine.">

 <cfreturn variables.instance.engine />

 </cffunction>

</cfcomponent>

Listing 4.6 – A Car object, which requires an engine

You can see from the code in Listing 4.6 that the Car object instantiates and sets the
Engine object itself within the init() constructor method. This highlights the fact
that the Car cannot exist without its composite objects, in this simple example
the Engine.

Inheritance and Object-Oriented Concepts

[102]

Create a new file called Engine.cfc and save it within the following location: com/
packtApp/oop/beans. Copy the code from Listing 4.7 into Engine.cfc to create the
composite component required by our Car object.

<cfcomponent displayname="Engine"
 output="false"
 hint="I am the Engine Class.">

 <cfset variables.instance = structNew() />

 <cffunction name="init" access="public"
 output="false" returntype="any"
 hint="I am the constructor method
 for the Engine Class.">

 <cfreturn this />

 </cffunction>

</cfcomponent>

Listing 4.7 – An Engine object, required for the car to exist

In this example, the Engine object itself is incredibly simple. Most likely within a
real-world application, any composite objects would include more methods and
functions than purely a constructor method.

Let's instantiate our Car object to see the composition in action.

The following code in Listing 4.8 contains the createObject() method to instantiate
the Car object, followed by a cfdump to view the object itself.

<cfset objCar =
 createObject('component',
 'com.packtApp.oop.beans.Car')
 .init() />

<cfdump var="#objCar#" />

Listing 4.8 – Instantiating the Car object

Our Car object requires no arguments or parameters, and so we do not need to send
any values into the constructor method. We understand that the Car object will
create its required Engine object and set the Engine into its variables.instance
structure.

Chapter 4

[103]

The output from the cfdump tag in Listing 4.8 can be seen in the previous image, in
which you can clearly see the Engine object nested within the properties of our Car
object, created as a requirement for our Car to exist.

Implied ownership
The concept of composition implies a certain level of ownership. When our Car
object is destroyed, so are the contained objects and its composite parts. No more
engine, no more wheels, no more pine-scented air freshener.

Aggregation
In comparison to composition in which an object can only exist if all of its composite
parts also exist, the concept of aggregation is not as strict. Instead, an aggregated
object can reference other objects, but it does not need them to exist.

We can see a simple example of aggregation in action if we again reference our Car
object. Unlike composition, where our car needed an engine to exist (after all, what
is a car without an engine), a car can have a driver, but it does not need the driver
to exist.

Let's revise our current Car.cfc component to handle the possibility of managing a
Driver object.

<cfcomponent displayname="Car"
 output="false"
 hint="I am the Car Class.">

 <cfproperty name="engine" type="any" default="" />
 <cfproperty name="driver" type="any" default="" />

 <cfset variables.instance = structNew() />

 <cffunction name="init" access="public"

Inheritance and Object-Oriented Concepts

[104]

 output="false" returntype="any"
 hint="I am the constructor method
 for the Car Class.">

 <cfargument name="driver" required="false"
 type="Any"
 hint="I am a driver object." />

 <cfset variables.instance.engine
 = createObject('component', 'engine') />

 <cfif structKeyExists(arguments, 'driver')>
 <cfset variables.instance.driver
 = arguments.driver />
 </cfif>

 <cfreturn this />

 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getEngine" access="public"
 output="false"
 hint="I return the engine.">

 <cfreturn variables.instance.engine />

 </cffunction>

 <cffunction name="getDriver" access="public"
 output="false"
 hint="I return the driver.">

 <cfreturn variables.instance.driver />

 </cffunction>

 <!--- public methods --->
 <cffunction name="hasDriver" access="public"
 returntype="boolean" output="false"
 hint="I check to see if a driver exists.">

 <cfreturn structKeyExists(variables.instance, 'driver') />

 </cffunction>

</cfcomponent>

Chapter 4

[105]

Listing 4.9 – Revising our Car object to accept a driver

As you can see highlighted in Listing 4.9, Car.cfc has received a few amendments
to handle the possible addition of a Driver object.

We have added in a non-required argument to the constructor method into which we
can send the Driver object if we wish to. If it does exist within the arguments scope,
then we can set the object into the variables.instance structure.

If a Driver object has not been passed into the constructor method, our Car object
will still be built, complete with its required engine object.

We have also added in a public method to check for the existence of the Driver
object, which will return a Boolean true/false value.

Let's now create our simple Driver object. Create a new file called Driver.cfc within
com/packtApp/oop/beans and add the following code from Listing 4.10 into the
component.

<cfcomponent displayname="Driver"
 output="false"
 hint="I am the Driver Class.">

 <cfproperty name="name" type="string" default="" />
 <cfproperty name="age" type="string" default="" />

 <cfset variables.instance = structNew() />

 <cffunction name="init" access="public"
 output="false" returntype="any"
 hint="I am the constructor method
 for the Driver Class.">

 <cfargument name="name" required="true"
 type="String"
 hint="I am the name of the driver." />

 <cfargument name="age" required="true"
 type="String"
 hint="I am the age of the driver." />

 <cfscript>
 variables.instance.name = arguments.name;
 variables.instance.age = arguments.age;
 </cfscript>

Inheritance and Object-Oriented Concepts

[106]

 <cfreturn this />

 </cffunction>

 <!--- getters / accessors --->
 <cffunction name="getName" access="public"
 output="false"
 hint="I return the name of the driver.">

 <cfreturn variables.instance.name />

 </cffunction>

 <cffunction name="getAge" access="public"
 output="false"
 hint="I return the age of the driver.">

 <cfreturn variables.instance.age />

 </cffunction>

</cfcomponent>

Listing 4.10 – A Driver object

In our example, the Driver object is incredibly simple and requires only two
properties; the name and age of the driver, with a getter/accessor method to obtain
the value of each property.

Let's create two instances of the Car object, one of which will receive a Driver. The
code in Listing 4.11 contains the relevant code to instantiate the objects.

<!--- Instantiate the Driver object --->
<cfset objDriver=
 createObject('component',
 'com.packtApp.oop.beans.Driver')
 .init(
 name = 'Stevey Jay',
 age = '31'
) />

<!--- Pass the Driver object into our Car object.--->
<cfset objCar =
 createObject('component',
 'com.packtApp.oop.beans.Car')

Chapter 4

[107]

 .init(
 driver = objDriver
) />

<cfdump var="#objCar#" />

<cfoutput>

<cfif objCar.hasDriver()>
This car is being driven by #objDriver.getName()#,
who is #objDriver.getAge()# years old.
<cfelse>
The car is not being driven at the moment.
</cfif>

</cfoutput>

Listing 4.11 – Instantiating our Car objects with an optional Driver object

In Listing 4.11, we are first creating our Driver object, before creating our Car object,
into which we send the Driver as a parameter.

Running a cfdump we are able to obtain a visual of the Car object and its properties,
which we can see in the following image.

We then make a request to the hasDriver() method within our Car object to check
for the existence of the Driver object, after which we are displaying either the driver
information or a generic message to inform that the Car has no driver.

Inheritance and Object-Oriented Concepts

[108]

We can amend the code by not sending the Driver object into the Car constructor
method (as follows).

<cfset objCar =
 createObject('component',
 'com.packtApp.oop.beans.Car')
 .init() />

<cfdump var="#objCar#" />

<cfoutput>

<cfif objCar.hasDriver()>
This car is being driven by #objDriver.getName()#,
who is #objDriver.getAge()# years old.
<cfelse>
The car is not being driven at the moment.
</cfif>

</cfoutput>

Listing 4.12 –Revising the code to not send through a Driver

Running the previous revised code from Listing 4.12, we obtain the following output:

Unlike composition, the Car object can still be created without the Driver object,
as it does not require it to be instantiated. We have added in methods to check for
its existence and to return it if required, but the object will still function properly
without it.

Chapter 4

[109]

Summary
In this chapter, we have explored the concept of inheritance within an object-oriented
application. We have looked at the possibility of sharing common code amongst
your components to reduce code duplication, but we have also investigated a little
further to better understand the requirements for true inheritance in the world of
OOP.

We have also looked into:

•	 The hierarchy of components and objects during inheritance
•	 Polymorphism as a side-effect of inheritance
•	 The difference between composition and aggregation

Data Access Objects
Our application structure is starting to take shape, and the addition of Beans and the
benefit of using these blueprints has already started to become apparent.

In this chapter, we will follow on our journey into ColdFusion OOP design patterns,
and investigate the use of Data Access Objects with our application.

We will also look into the following:

•	 Understanding what a Data Access Object is
•	 Creating database interactions
•	 Storing objects in memory

What is a Data Access Object?
A Data Access Object, also known as a DAO, is a form of an object-oriented design
pattern that allows you to separate data access from standard business logic within
your application. Primarily, the DAO gives you the ability to perform updates and
interactions with your database from a single file, your DAO file itself.

As we have seen in Chapter 3, the Bean objects hold values for a single record of data.
The Data Access Objects work in harmony with the Bean objects and update a single
record or row within a larger data store—this could be an XML file, text file, or any
other form of storage, but more commonly a database.

Traditionally, Data Access Objects only ever deal with a
single record at a time.

Data Access Objects

[112]

Traditionally, a DAO will contain four methods that allow you to do the following:

•	 Create/insert a record
•	 Read/select a record
•	 Update a record
•	 Delete a record

The 'big four' methods within a DAO are commonly referred to as CRUD methods
(Create, Read, Update, and Delete) and perform the basic SQL database functions;
Insert, Select, Update, and Delete.

Creating a Data Access Object
For our introduction into Data Access Objects, we'll create a small application to query,
read, and update a database table containing information on users; this could be
applied to a real-world example such as a login form, or a user management console.

We will be accessing the data from a table within our database, called tbl_Users,
which contains relatively basic information for each entry. Here, you can see a UML
diagram of the User.cfc bean, which has been created to reflect the columns and
interact with the values from the table.

Chapter 5

[113]

You can see from the UML diagram that we have a getter/accessor method
for each property within the bean, and we also have a simple helper function,
getFullName(), which will concatenate the user's first and last names into a single
string. We also have a public setter/mutator function for each property, although
these haven't been included in this diagram for simplicity.

The User bean will play an incredibly important role used in conjunction with
our User Data Access Object. As the blueprint for each user, the User bean will be
populated with information returned from the database queries within the DAO.

If we consider the CRUD statements that we would like to include into our User
DAO, we could expect the UML diagram of our object to look similar to this:

The four main methods written within the UML diagram would satisfy our basic
requirements for our CRUD methods, which are:

•	 createNewUser()

•	 getUserByID()

•	 updateUser()

•	 deleteUser()

Let's start by building the core foundation for the UserDAO.cfc. As with all of
our ColdFusion components, we need to define the init() constructor method to
instantiate the object for use in our application.

Create a new file called UserDAO.cfc in the following directory from your webroot:
'com.packtApp.oop.dataAccess.UserDAO.cfc', and copy the following code
into the file:

<cfcomponent displayname="UserDAO" output="false" hint="I am the
 UserDAO Class.">
 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 datasource = ''
 } />

Data Access Objects

[114]

 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method or the
 UserDAO Class.">
 <cfargument name="datasource" required="true"
 type="com.packtApp.oop.beans.Datasource" hint="I am the
 datasource object." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 variables.instance.datasource = arguments.datasource;
 </cfscript>
 <cfreturn this />
 </cffunction>
 <!--- PUBLIC METHODS --->
</cfcomponent>

Listing 5.1 – UserDAO.cfc

Initially, the layout and structure of this object is incredibly similar to any other CFC
we have built so far. We set up the pseudo-constructor, and we have the init()
constructor method to set any variables upon instantiation.

As with other constructor methods, we are sending through a value to set and use
throughout our DAO.

Our Data Access Object's purpose is to interact with a given datasource. As such, we
need to let the DAO know the details for the datasource we wish to connect to, as
specified within the ColdFusion administrator.

We could simply pass through a string variable that contains the name of the
datasource, and save that value within the variables.instance scope. However,
database connectivity may be restricted to user access and so may require a
username and password to connect from within our code.

These could also be sent through as separate string values, but we could easily
incorporate these into their own object, which acts as a blueprint for any datasource
connections. It is this object that we are sending through into the DAO init()
method.

You can see from the cfargument tag in Listing 5.1, that we can force the type
attribute to expect a specific object by setting it to the location of the object within our
application file structure.

The structure for our Datasource bean itself is incredibly simple, and contains three
simple methods to access the name of the datasource, a username, and a password.

The UML diagram for the Class is represented as follows:

Chapter 5

[115]

<cfcomponent displayname="Datasource" output="false"
 hint="I am the Datasource Class.">
 <cfproperty name="DSName" type="string" default="" />
 <cfproperty name="username" type="string" default="" />
 <cfproperty name="password" type="string" default="" />
 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 DSName = '', username = '', password = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for the
 Datasource Class.">
 <cfargument name="DSName" required="true" type="String"
 hint="I am the name of the datasource." />
 <cfargument name="username" required="true" type="String"
 default="" hint="I am the username required to access
 the datasource." />
 <cfargument name="password" required="true" type="String"
 default="" hint="I am the password required to access
 the datasource." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 variables.instance.DSName = arguments.DSName;
 variables.instance.username = arguments.username;
 variables.instance.password = arguments.password;
 </cfscript>
 <cfreturn this />

Data Access Objects

[116]

 </cffunction>
 <!--- getters / accessors --->
 <cffunction name="getDSName" access="public" output="false"
 hint="I return the name of the datasource.">
 <cfreturn variables.instance.DSName />
 </cffunction>
 <cffunction name="getUsername" access="public" output="false"
 hint="I return the username required to access the datasource.">
 <cfreturn variables.instance.username />
 </cffunction>
 <cffunction name="getPassword" access="public" output="false"
 hint="I return the password required to access the datasource.">
 <cfreturn variables.instance.password />
 </cffunction>
</cfcomponent>

Listing 5.2 – Datasource.cfc

Now that we have a Datasource bean, we have the blueprint for any datasource,
and so can reuse this object throughout our entire application and instantiate a new
object for each datasource that we may have running behind our code.

Here, we first instantiate the Datasource object using the connection details to the
datasource from the ColdFusion administrator, and then send that datasource object
into the UserDAO object init() method.

<!--- Instantiate the Datasource object. --->
<cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<username>', password='<password>') />
<!---Instantiate the UserDAO object, and pass in the Datasource
 object.--->
<cfset objUserDAO = createObject('component',
 com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

Listing 5.3 – Instantiating the UserDAO object

The technique of sending one object into another like this is known as dependency
injection, which we will cover in a little more detail later within this chapter.

The create method
Now that we have the basis for our Data Access Object created, let's start adding the
methods that will satisfy our basic CRUD operations.

The first to implement will be our method to create a new record.

Chapter 5

[117]

The createNewuser() method within the DAO is essentially nothing more than a
cfquery tag running an INSERT statement into the tbl_Users table.

Let's add the following code into the userDAO.cfc file underneath the
constructor method:

<!--- CREATE --->
<cffunction name="createNewUser" access="public" output="false"
 returntype="Numeric" hint="I insert a new record into the
 database.">
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User bean." />
 <cfset var qInsert = '' />
 <cfset var insertResult = 0 />
 <cfquery name="qInsert"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#"
 result="insertResult">
 INSERT INTO tbl_Users(
 firstName, lastName, username, password, emailAddress)
 VALUES(
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getFirstName()#" />,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getLastName()#" />,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getUsername()#" />,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getPassword()#" />,
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getEmailAddress()#" />
)
 </cfquery>
 <!---Here, we return the generatedKey value, which is an
 auto-generated value from mySQL.--->
 <cfreturn insertResult.generatedKey />
</cffunction>

Listing 5.4 – The createNewUser() method

The INSERT statement itself is fairly standard SQL, calling the column names within
the database we wish to insert data into.

The most important thing to note here is from where we obtain the values to insert
into the table. For our one and only argument in this method, we are passing in the
User object, which contains the data we wish to insert into the database to create our
new record.

Data Access Objects

[118]

Using the getter/accessor methods within the User bean, we are able to obtain each
value to use in the SQL statement, which are wrapped within a cfqueryparam tag.
The cfsqltype attribute for each value is set to match the datatype of the value
within the database, to aid with security and datatype validation.

Our createNewUser() method is returning the value of the generated primary
key for the new record. In this example, this is possible using the generatedKey
reference, which is the value generated from the MySQL database.

We can use that reference to create a populated User bean, having obtained the
information from the database using the next of our core CRUD methods,
a read method.

Storing a new user
Let's look at a practical example of creating a new user using the Data Access Object.
We'll create a basic HTML form that submits the user data we want to capture. Once
the form is submitted, we'll save the data into the database and generate a User bean
populated with the information.

Create a new file and save it as addNewUser.cfm. Add the following code into the
template:

<!---Check to see if the form has been submitted.--->
<cfif structKeyExists(FORM, 'submitUser_btn')>
</cfif>
<form name="createUser" action="addNewUser.cfm" method="POST">
 <label for="firstName">First name:</label>
 <input type="text" name="firstName" />

 <label for="lastName">Surname:</label>
 <input type="text" name="lastName" />

 <label for="lastName">Username:</label>
 <input type="text" name="username" />

 <label for="password">Password:</label>
 <input type="password" name="password" />

 <label for="emailAddress">Email:</label>
 <input type="text" name="emailAddress" />

 <input type="submit" name="submitUser_btn" value="Create User" />
</form>

Listing 5.5 – addNewUser.cfm

In the previous code listing, we have a simple form to capture our user information.
In this instance, the names of the form input elements also match the names of the
properties within the User bean and the database table; this will make it easier to
handle the data.

Chapter 5

[119]

Between the cfif tags, add the following code to handle our database transaction
and the creation of the User bean:

<cfif structKeyExists(FORM, 'submitUser_btn')>
 <!--- Instantiate the Datasource object. --->
 <cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<your dsn username>',
 password='<your dsn password>') />

 <!---Instantiate the UserDAO object, and pass in the Datasource
 object.--->
 <cfset objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

 <!---Populate a new User bean with the data submitted
 in the form.--->
 <cfset objUserBean = createObject('component',
 'com.packtApp.oop.beans.User').init(
 argumentCollection=FORM) />

 <!---Dump the User Bean so we can see it populated with
 the FORM data.--->
 <cfdump var="#objUserBean#" label="New User Bean" />

 <!---Send the new User bean into the UserDAO to create a new
 database entry, returning the generated key of the
 new record.--->
 <cfset intNewID = objUserDAO.createNewUser(user=objUserBean) />
 <!--- Set the new ID into the User Bean --->
 <cfset objUserBean.setID(intNewID) />

 <!---Dump the User Bean so we can see it completely
 populated now.--->
 <cfdump var="#objUserBean#" label="Revised New User Bean" />
</cfif>

Listing 5.6 – Form handler functionality in addNewUser.cfm

So, what are we doing once the form has been submitted?

Firstly, we are creating the instances of the Datasource object and the UserDAO object.

As these are both singleton objects, these would be very well suited to
be instantiated and stored within the Application scope within your
onApplicationStart() method, which would ensure their availability throughout
the entire application and thereby reducing the overhead required to create these
objects on every page they may be needed.

Data Access Objects

[120]

A singleton object is essentially an object that only requires a
single instance within your application. Created only once during
application start up, it does not need to be amended or revised, and
typically exists for the entire duration of an application.

After the instantiation of the two singleton objects, we create an instance of the User
bean. As the form element names matched the names of the bean properties, we do
not need to match every one individually, and so here we are able to send the entire
form into the init() method as an argument collection.

We do not yet have the ID for the User, and so a dump of the User bean shows that
the ID property is still using the default value of '0'.

Chapter 5

[121]

Next, we pass the freshly-created User bean into the createNewUser() method,
which, as we have seen, will gather each property value and insert these into the
database returning the generated ID of the new database record, which we will
assign to the variable intNewID.

Now that we have the ID for the record, we can use the setter method to set the ID
into the User bean object, and dumping the bean once more we can see the complete
populated bean object, which now contains the ID of the record within the database.

The read method
Now that we are able to insert a single row of data into the database, we need the
ability to retrieve it again.

Remembering that typically the CRUD methods deal with a single record at any
time, the most logical way to obtain a record is to use its ID or primary key value.
Essentially, a read method allows us to run a SELECT statement on the database, and
pull out a single row of data based upon the WHERE clause, which in this case is the
ID of the specific record we want to obtain.

Let's add the code for our getUserByID() method into the userDAO.cfc:

<!--- READ --->
<cffunction name="getUserByID" access="public" output="false"
 hint="I return a Person bean populated with details of a
 specific user.">
 <cfargument name="userID" required="true" type="Numeric"
 hint="I am the ID of the user you wish to search for." />
 <cfset var qSearch = '' />
 <cfset var objPerson = '' />
 <cfquery name="qSearch"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">
 SELECT ID, firstName, lastName, username, password,
 emailAddress
 FROM tbl_Users
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.userID#" />
 </cfquery>
 <cfif qSearch.RecordCount>
 <!---If a record has been returned for the userID, create an
 instance of the User bean, and return it.--->
 <cfset objPerson = createObject('component',
 'com.packtApp.oop.beans.User').init(
 ID = qSearch.ID, firstName = qSearch.firstName,

Data Access Objects

[122]

 lastName = qSearch.lastName, username = qSearch.username,
 password = qSearch.password, emailAddress =
 qSearch.emailAddress) />
 </cfif>
 <cfreturn objPerson />
</cffunction>

Listing 5.7 – The getUserByID() method

You can see from the code listing that we are sending in a required argument, which
is the ID of the User we wish to pull out information for.

Handling select results
To handle returned data from the query, a cfif statement is included, to check for
the existence of data:

<cfif qSearch.RecordCount>
 <!---If a record has been returned for the userID,
 create an instance of the User bean, and return it.--->
 <cfset objPerson = createObject('component',
 'com.packtApp.oop.beans.User').init(
 ID = qSearch.ID, firstName = qSearch.firstName,
 lastName = qSearch.lastName, username = qSearch.username,
 password = qSearch.password,
 emailAddress = qSearch.emailAddress) />
</cfif>

Listing 5.8 – A closer look at creating the User bean

If the query result does contain at least one record, the method creates a new User
Bean instance and runs the init() method, passing the values from the query into
the constructor to populate the Bean straight away. We then return the populated
User object for use within the application. If no records match the user ID we are
requesting, the method will return an empty string.

Listing 5.9 contains the example code to obtain a User bean populated with data
from the database.

<!--- Instantiate the Datasource object. --->
<cfset objDatasource =
 createObject('component',
 'com.packtApp.oop.beans.Datasource')
 .init(
 DSName='CFOOP',
 username='<your dsn username>',
 password='<your dsn password>'

Chapter 5

[123]

) />

<!---Instantiate the UserDAO object, and pass in the
 Datasource object.--->
<cfset objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

<!---Obtain the User Bean from the getUserByID() method.--->
<cfset objUserBean = objUserDAO.getUserByID(1) />
<!--- Dump the User Bean.--->
<cfdump var="#objUserBean#" label="Returned User Bean" />

Listing 5.9 – Populating a User bean from the datasource

The resulting output from a call to the UserDAO read method using this code sample
would look like this, returning a populated User bean ready for use within
the application:

The update method
The next function to add from our group of CRUD functions is an update method.

Syntactically, the update function is another relatively simple one to develop and
understand. The core of the function, the SQL statement itself, is nothing more than
an UPDATE statement, setting new values to the table columns.

Add the following code to the UserDAO.cfc file to include the new method,
updateUser():

<!--- UPDATE --->
<cffunction name="updateUser" access="public" output="false"
 hint="I update a user's details.">
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User bean." />

Data Access Objects

[124]

 <cfset var qUpdate = '' />
 <cfset var boolSuccess = true />
 <cftry>
 <cfquery name="qUpdate"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">
 UPDATE tbl_Users
 SET firstName = <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getFirstName()#" />,
 lastName = <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getLastName()#" />,
 username = <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getUsername()#" />,
 password = <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getPassword()#" />,
 emailAddress = <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.user.getEmailAddress()#" />
 WHERE
 ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.user.getID()#" />
 </cfquery>
 <cfcatch type="database">
 <cfset boolSuccess = false />
 </cfcatch>
 </cftry>
 <cfreturn boolSuccess />
</cffunction>

Listing 5.10 – The updateUser() method

You may notice first off that like the createNewUser() method, we are sending in
the User bean as the required parameter. The User bean itself is populated with the
details of the user we wish to update within the database.

The method itself does not return a User bean or any recordset information from the
database. In this instance, the function returns a Boolean value. This is set to true by
default at the top of the method, and will return true, unless any database errors are
caught within the cftry/cfcatch tags, which will then set the value of the Boolean
to false.

Let's create another simple real-world demonstration of this code in use.

We will create a simple form that holds basic information on a user. Once submitted,
the form will update the database and return a new User bean, populated with the
revised information fresh from the datasource.

Chapter 5

[125]

Create a new file called editUser.cfm, and add the following code to build the form
and instantiate the core objects:

<h3>Current User Information</h3>
<!--- Instantiate the Datasource object. --->
<cfset objDatasource =
 createObject('component',
 'com.packtApp.oop.beans.Datasource')
 .init(
 DSName='CFOOP',
 username='<your dsn username>',
 password='<your dsn password>'
) />

<!---Instantiate the UserDAO object, and pass in the
 Datasource object.--->
<cfset objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

<!---Get the User bean for this user from the DAO.--->
<cfset objUserBean = objUserDAO.getUserByID(7) />
<!---Dump the User Bean so we can see the data it
 currently holds.--->
<cfdump var="#objUserBean#" label="User Bean" />

<!---Check to see if the form has been submitted.--->
<cfif structKeyExists(FORM, 'editUser_btn')>
</cfif>
<cfoutput>
<form name="createUser" action="editUser.cfm" method="POST">
 <label for="firstName">First name:</label>
 <input type="text" name="firstName"
 value="#objUserBean.getFirstName()#" />

 <label for="lastName">Surname:</label>
 <input type="text" name="lastName"
 value="#objUserBean.getLastName()#" />

 <label for="emailAddress">Email:</label>
 <input type="text" name="emailAddress"
 value="#objUserBean.getEmailAddress()#" />

 <input type="submit" name="editUser_btn"
 value="Edit User" />
</form>
</cfoutput>

Data Access Objects

[126]

Listing 5.11 – editUser.cfm

Similar to the code in our addNewUser.cfm example, here we have a very simple
form that displays three elements to edit for a user: their first name, last name, and
e-mail address.

We are obtaining our user to edit at the top of the template using the getUserByID()
method, and a cfdump tag displays the current properties of the populated User bean.

We are also using the getter/accessor methods for the properties to set the values of
the form elements for us to edit.

Let's add the code within the cfif tags that handle the revision and amendments to
the user information after the form has been submitted.

<!---Check to see if the form has been submitted.--->
<cfif structKeyExists(FORM, 'editUser_btn')>
 <h3>Edited User Information</h3>

 <!---Set the values of the form elements into the
 currently populated User bean object.--->
 <cfset objUserBean.setFirstName(FORM.firstName) />
 <cfset objUserBean.setLastName(FORM.lastName) />
 <cfset objUserBean.setEmailAddress(FORM.emailAddress) />

 <!---Pass this User bean into the updateUser() method.--->
 <cfset objUserDAO.updateUser(user=objUserBean) />
 <!--- Just for this example, let's query the database

Chapter 5

[127]

 for the userID and pull out the information to make sure it
 matches the amendments we have made.--->
 <cfset objUserBean = objUserDAO.getUserByID(7) />
 <cfdump var="#objUserBean#" label="Revised New User Bean" />
</cfif>

Listing 5.12 – Adding the form handler functionality to editUser.cfm

The updateUser() method accepts the User bean as the required argument. We
already have the bean instantiated in our page (it is providing the information for the
form fields, after all).

We are easily able to update the values of this current Bean using its setter/mutator
methods, which we do in the code example by setting the firstName, lastName, and
emailAddress property values.

We then send our User bean into the updateUser() method, which will update the
database record for our individual.

Data Access Objects

[128]

To test whether the database update has been a success, we run another
getUserByID() method to create a new User bean for the same individual we are
updating. Dumping this bean onto the page, we can see that the values within the
database have been amended with the new information, which is also reflected in the
values of the form elements.

The delete method
Finally, to complete our CRUD requirements, let's add a method to deal with
deleting individual user records from the datasource.

Add the following code into the UserDAO.cfc file:

<!--- DELETE --->
<cffunction name="deleteUserByID" access="public" output="false"
 returntype="boolean" hint="I delete a user from the database.">
 <cfargument name="userID" required="true" type="String"
 hint="I am the ID of the user you wish to delete." />
 <cfset var qDelete = '' />
 <cfset var boolSuccess = true />
 <cftry>
 <cfquery name="qUpdate"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">
 DELETE FROM tbl_Users
 WHERE ID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.userID#" />
 </cfquery>
 <cfcatch type="database">
 <cfset boolSuccess = false />
 </cfcatch>
 </cftry>
 <cfreturn boolSuccess />
</cffunction>

Listing 5.13 – The deleteUserByID() method

As we are only deleting one record at a time, the simplest and easiest way to achieve
this is to reference the primary key or ID of the record, much in the same way as we
accessed an individual record for our getUserById() method. As such, we require
an ID value be sent through the arguments, which is then used within the SQL
statement to delete the correct record.

Chapter 5

[129]

We are also handling the return from this method in exactly the same way we handle
a return from the updateUser() method, which is by sending a Boolean value (set to
true by default).

<!--- Instantiate the Datasource object. --->
<cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<your dsn username>',
 password='<your dsn password>') />

<!---Instantiate the UserDAO object, and pass in the
 Datasource object.--->
<cfset objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO') .init(
 datasource=objDataSource) />

<!---Delete a specific user from the database.--->
<cfset objUserDAO.deleteUserByID(4) />

Listing 5.14 – Deleting a user through the DAO

Listing 5.14 shows a basic example of using the deleteUserByID() method to
remove a specific record from the database.

An alternative save method
In the Data Access Object, the createNewUser() and updateUser() methods are
incredibly similar. One creates a new record within the database, while the other
updates an existing record's details.

Traditionally, the CRUD methods are all you need to complete your DAO code
and interaction with the database to return a single record. However, an alternative
function can be placed within the UserDAO.cfc, which will effectively handle both
the createNewUser() and updateUser() transactions. The saveUser() method
will determine which action to take (create or update) based upon results from the
second function we will add: the exists() method.

Let's create the two new methods within the UserDAO.cfc file, beneath the existing
CRUD functions.

The save method
We can use the saveUser() method whenever we need to either create or update a
record within the database. As this method essentially acts as a handler for either the
create or update functions, both of which require the User bean as a parameter, the
saveUser() method also requires the User object.

Data Access Objects

[130]

<!--- SAVE --->
<cffunction name="saveUser" access="public" output="false"
 returntype="string" hint="I handle saving a User, either by
 creating a new entry or updating an existing one.">
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User bean." />
 <cfset var success = '' />
 <cfif exists(arguments.user)>
 <cfset success = updateUser(arguments.user) />
 <cfelse>
 <cfset success = createNewUser(arguments.user) />
 </cfif>
 <cfreturn success />
</cffunction>

Listing 5.15 – The saveUser() method

At the top of the function, we set a locally scoped variable called success that will
hold a default empty string value, which will be updated with the return value of
whichever method is used internally.

The line to note within the saveUser() method is highlighted in the previous code.
The values within the User object are sent to the second function, the exists()
method. This uses the individual ID key value from the Bean, and runs a query
against the database to find any records that have a matching ID value.

If a record does exist, the updateUser() method will run, sending through the
required User object as an argument within the function.

If there is no match, the record needs to be created, and so the createNewUser()
method is run.

The exists method
The saveUser() method is in place, so we now need to add the exists() method to
run the database query to check for an existing record.

<!--- EXISTS --->
<cffunction name="exists" access="public" output="false"
 returntype="boolean" hint="I check to see if a specific User
 exists within the database, using the ID as a check.">
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User
 bean." />
 <cfset var qExists = "">
 <cfquery name="qExists"
 datasource=

Chapter 5

[131]

 "#variables.instance.datasource.getDSName()#"
 username=
 "#variables.instance.datasource.getUsername()#"
 password=
 "#variables.instance.datasource.getPassword()#"
 maxrows="1">
 SELECT count(1) as idexists
 FROM tbl_Users
 WHERE ID = <cfqueryparam
 value="#arguments.user.getID()#"
 CFSQLType="cf_sql_integer" />
 </cfquery>
 <cfif qExists.idexists>
 <cfreturn true />
 <cfelse>
 <cfreturn false />
 </cfif>
</cffunction>

Listing 5.16 – The exists() method

Sending in the User object as the required argument, the cfquery tag runs a SELECT
statement with a SQL count() function to ascertain if the record exists.

The cfquery tag has the added maxrows="1" attribute to ensure only one row is ever
returned, and the ID value is drawn from the getID() method within the User object.

You could amend the DAO code further by ensuring that only the
save() method is available for public use from any .cfm template
by setting the access="" attributes of the createNewUser() and
updateUser() methods to private.

After the addition of the new exists() and saveUser() methods to the UserDAO
object, our UML diagram of the object would now look like this:

Data Access Objects

[132]

You can instantly see from the UML that the createNewUser() and updateUser()
methods were set to private access to allow the saveUser() method to control the
management of the user additions and amendments.

Caching the Data Access Objects
As we have seen, typically Data Access Objects are singleton objects; it only needs to
be created once and cached. This is a simple case of assigning the component (or the
variable containing the component reference) to a variable in a memory scope, the
most common of which are the Session and Application scopes.

The Application scope is ideal for application-specific components, such as Data
Access Objects, whereas the Session scope is perfectly suited for holding components
and objects relating to a specific user–a shopping cart or User object, for example.

By caching a component, you have access to all of its properties for as
long as the component exists in memory.

We can add the UserDAO to the Application scope to ensure we have access
to the CRUD methods throughout the entire application by adding something
similar to the following code within the onApplicationStart() method of your
Application.cfc:

<cffunction name="onApplicationStart" output="false">
 <!--- Instantiate the Datasource object. --->
 <cfset var objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<your dsn username>',
 password='<your dsn password>') />

 <!--- Instantiate the UserDAO object. --->
 <cfset var objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

 <!--- Store the UserDAO in the Application scope. --->
 <cfset Application.userDAO = objUserDAO />
</cffunction>

Listing 5.17 – Caching the DAO in the Application scope

The UserDAO is now available on every page inside the application without having
to create a new instance of it every time. This method of caching objects is perfect for
storing components whose values do not change, such as Data Access Objects.

Chapter 5

[133]

Dependency Injection
We have seen earlier in this chapter that we were sending a Datasource object into
the constructor method of our UserDAO object, to provide the connection details for
the datasource.

This is an object-oriented programming technique used to provide information to
a specific object for it to work with.

Essentially, Dependency Injection (DI) controls what information an object has
access to, and therefore, what information it has to work with. Traditionally in
procedural programming, an object may have access to information from a variety
of sources, and the object itself may have the ability to access and digest this
information as needed.

Using Dependency Injection in your object-oriented programming is a highly
effective way to control this information; the technique is also known as
Inversion of Control (IoC).

This means that the control over what your object receives is inverted and instead
of grabbing whatever it needs, the object is provided or fed only the information or
data it is allowed to use. As a result it only uses that information it has been given.

Displaying Dependency Injection using the UML guidelines is incredibly simple. To
emphasize a dependency between objects, we join them using a dotted line with an
arrowhead, as shown in the previous image.

For a more detailed look into the technique of Dependency Injection, please visit the
following wiki site:

http://www.objectorientedcoldfusion.org/wiki/Dependency_Injection.

Data Access Objects

[134]

Summary
In this chapter, we have created a Data Access Object to interact with our database
to obtain one record at any time. We have also seen how the DAO works seamlessly
with our User bean object to create and read information.

Other topics we have covered in this chapter are:

•	 The CRUD methods (Create, Read, Update, and Delete)
•	 Passing Beans as an argument into the DAO
•	 An introduction to Dependency Injection
•	 Caching the objects in memory scopes

Gateways
In Chapter 5, we explored and developed Data Access Objects (DAOs) for our
application that managed single-record transactions—one row of data inserted,
updated, deleted, or returned at any one time—and how the Bean object was used as
the blueprint to hold and manage the values returned from the DAO queries.

Having dealt with these single-record transactions, we now need to focus on reading
and handling results from a database query or data provider that returns multiple
records per transaction.

Managing an application that may hold and use large amounts of content from a
data provider can be a daunting task at times.

It is not uncommon for applications to feature large search interfaces, perhaps with
pagination, such as lists of users within a contact application, for example.

When developing object-oriented applications, the burden of dealing with large
queries such as these can be easily managed by wrapping all relevant code into one
object, a Gateway.

In this chapter, we will discuss what a Gateway is and how it can be implemented
into your ColdFusion application.

We will also discover:

•	 The underlying similarities between the Gateway and the
Data Access Objects

•	 Additional benefits of code separation

Gateways

[136]

What is a Gateway?
Sounding mysteriously like a doorway to a mysterious netherworld, a Gateway
forms an important part of object-oriented development.

An official description of a Gateway was provided by Martin Fowler, an expert in OOP:

A Gateway is an object that encapsulates access to an external system or resource—
Martin Fowler.

This description states that a Gateway object manages and handles access to

Essentially, this means that a Gateway object will manage and handle access between
an application and a data provider, which could be anything such as a relational
database, or an external Application Programming Interface (API) returning XML
or JSON formatted data.

Regardless of where the data originates from, or in which format it is returned, the
main purpose of the Gateway is to encapsulate the relationship and return the data
cleanly and easily back to the application.

Other objects are able to access the resource by sending requests through the
Gateway object that returns the data in a format specified by the developer, which
can then be easily digested by the object(s) making the initial request.

Working on the same principle as all other objects, if the external API or relational
database changes, you only need to make amendments to the particular objects that
reference the data source.

A typical ColdFusion Gateway
As our introduction into Gateway objects, we will create an object that will allow us
to query our database table of users to retrieve a large query of all records stored,
as well as methods that will allow us to search or 'filter' the data to return specific
records based upon criteria, suitable for a search interface.

Firstly, let's create a new ColdFusion template file and save it with the name
listUsers.cfm. This page will form part of our user management application, and
will list all Users currently stored within the database.

Let's add the following code into the listUsers.cfm file:

<cfquery name="qlistUsers" datasource="CFOOP" username="<username>"
 password="<password>">
 SELECT ID, firstName, lastName, username, password, emailAddress

Chapter 6

[137]

 FROM tbl_Users ORDER BY firstName
</cfquery>
<cfdump var="#qlistUsers#" label="qlistUsers" />
<h3>List All Users</h3>

 <cfoutput query="qlistUsers">

 #firstName# #lastName#

 </cfoutput>

Listing 6.1 - listUsers.cfm

The code in Listing 6.1 is relatively straightforward; the SQL statement and the query
are pulling out all records for all users within the database. We are then looping
through the data and adding each line to an unordered list.

We are also wrapping an HTML link element around the user's name, which points
to the editUser.cfm file, sending with it the ID of the specific database record.

The generated output of the code in Listing 6.1 can be seen in the previous screenshot.
The output is ideal for the basic requirements. The link over the project name would
allow us to create a ColdFusion page to view details on the specific user and edit/
update them using the methods within our UserDAO object, created in Chapter 5.

Gateways

[138]

The qListUsers query is returning a recordset that can contain more than one
record from the database. Unlike the Data Access Objects in Chapter 5 which tend to
deal specifically with one record at a time, we can use the Gateway object to interact
with the datasource and return large queries containing multiple records.

In its current state, the code is too procedural and the query is contained inline
on the listUsers.cfm template. This is also quite a generic query, returning all
users within the database, and could potentially be used in more than one place
throughout the application.

Creating a Gateway object
The basic structure of the Gateway object is no different to any other ColdFusion
Component we have written so far, wrapped in the cfcomponent tag and containing
a constructor method.

If we look at a UML diagram of the Gateway object we will initially be creating,
we can clearly see that it also contains two methods, getAllUsers() and
filterbylastName(), both of which will return a query object.

Naming conventions
As far as naming conventions go for the methods themselves, the developer has
the freedom to call the methods anything at all, although ideally naming them
something relevant to their purpose and function.

Typically, Gateway methods are named as getAll_x() of filter_x() where x is
the descriptive part of the method name, as essentially they are either returning a
complete query containing all records, or are running some form of search operation,
thereby filtering content using a WHERE clause in the SQL syntax.

Create a new file called UserGateway.cfc in the following directory from your
webroot: 'com.packtApp.oop.dataAccess.UserGatweay.cfc', and copy the
following code into the file:

<cfcomponent displayname="UserGateway" output="false"
 hint="I am the UserGateway Class.">
 <!--- Pseudo-constructor --->

Chapter 6

[139]

 <cfset variables.instance = {
 datasource = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for
 the UserGateway Class.">
 <cfargument name="datasource" required="true"
 type="com.packtApp.oop.beans.Datasource"
 hint="I am the datasource object." />
 <!--- Set the initial values of the property --->
 <cfscript>
 variables.instance.datasource = arguments.datasource;
 </cfscript>
 <cfreturn this />
 </cffunction>
 <!--- PUBLIC METHODS --->
</cfcomponent>

Listing 6.2 shows the basis for our UserGateway.cfc

Identical to the constructor method used in our Data Access Object, the init()
constructor method accepts a single required argument, datasource, which is the
Datasource bean object, populated with the relevant details to access our database.

<!--- Instantiate the Datasource object. --->
<cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<username>', password='<password>') />

<!---Instantiate the UserGateway object, and pass in the
 Datasource object.--->
<cfset objUserGW = createObject('component',
 'com.packtApp.oop.dataAccess.UserGateway').init(
 datasource=objDataSource) />

Listing 6.3 – Instantiating the UserGateway object

Upon instantiation of the Gateway object, the value of the datasource argument is
stored within the CFCs Variables scope, for use throughout the entire object.

Gateways

[140]

Adding gateway methods
Let's now add the two query functions into our UserGateway object, starting with
the getAllUsers() method, which will return all records within the database table
without any filters applied.

Add the following code into the UserGateway.cfc file underneath the
constructor method:

<!--- PUBLIC METHODS --->
<cffunction name="getAllUsers" access="public" output="false"
 hint="I run a query of all users within the database table.">
 <cfset var qAllUsers = '' />
 <cfquery name="qAllUsers"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">
 SELECT ID, firstName, lastName, username, password,
 emailAddress
 FROM tbl_Users
 </cfquery>
 <cfreturn qAllUsers />
</cffunction>

Listing 6.4 – the getAllUsers() method

Here in Listing 6.4, you can now see the addition of the getAllUsers() method.
This query essentially takes the qlistUsers query that was seen in Listing 6.1 and
places it within the Gateway object.

As seen in Chapter 5, in this code we are again reading the properties from the
Datasource bean to populate the attributes of our cfquery tag, and then we are
running a SQL SELECT statement on the entire tbl_Users database table.

<!--- Instantiate the Datasource object. --->
<cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<username>', password='<password>') />

<!---Instantiate the UserGateway object, and pass in the
 Datasource object.--->
<cfset objUserGW = createObject('component',
 'com.packtApp.oop.dataAccess.UserGateway').init(
 datasource=objDataSource) />

<!---Pull out all users within the database.--->
<cfset qResults = objUserGW.getAllUsers() />

Chapter 6

[141]

<!---Dump the results.--->
<cfdump var="#qResults#" label="getAllUsers Results" />

Listing 6.5 – Getting all users

The code in Listing 6.5, is a brief example of using the getAllUsers() method to
return a complete query object of all records within the database table, the results of
which can be seen as follows:

Let's now add our second gateway function into the object. This method will perform
a similar operation to the getAllUsers() method by querying the entire database
table with the exception of a required argument, which will be used to filter the
results based upon the last name of the user.

Add the following code into the UserGateway.cfc beneath the getUsers() method:

<cffunction name="filterByLastName" access="public" output="false"
 hint="I run a query of all users within the database table based
 upon a required filter.">
 <cfargument name="lastNameFilter" required="true" type="String"
 hint="I am the filter you wish to apply for the last name of the
 user." />
 <cfset var qUserFilter = '' />
 <cfquery name="qUserFilter"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">
 SELECT ID, firstName, lastName, username, password,
 emailAddress
 FROM tbl_Users
 WHERE
 lastName LIKE
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.lastNameFilter#" />
 </cfquery>

Gateways

[142]

 <cfreturn qUserFilter />
</cffunction>

Listing 6.6 – the filterByLastName() method

Incredibly similar to the getAllUsers() method, in Listing 6.6 you can see the SQL
statement has been amended to include a WHERE clause, which will filter the query
results based upon the value sent through in the arguments scope.

<!--- Instantiate the Datasource object. --->
<cfset objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<username>', password='<password>') />

<!---Instantiate the UserGateway object, and pass in the
 Datasource object.--->
<cfset objUserGW = createObject('component',
 'com.packtApp.oop.dataAccess.UserGateway').init(
 datasource=objDataSource) />

<!---Filter a user to obtain results. We can use wildcard
 operators as well.--->
<cfset qResults = objUserGW.filterByLastName('%tu%') />

<!---Dump the results.--->
<cfdump var="#qResults#" label="filterByLastName Results" />

Listing 6.7 – Search for a user using a filter

Code Listing 6.7 shows a basic example of using the filterByLastName() method
to return a query of records from the database. Here we are sending in a specific text
string wrapped in wildcard operators as the required argument, and using that value
to perform the LIKE comparison in the SQL WHERE clause.

Chapter 6

[143]

In the previous screenshot, you can see the results returned from the
filterbyLastName() method that match the required filter string passed into
the function.

Minimising code duplication
After adding our two select queries into the UserGateway object, we have seen quite
clearly that there are not many differences between the two queries themselves; both
are querying the same columns within the table, both are returning a query object.
The only difference lies with the filter aspect and any arguments sent through into
the WHERE clause of the query itself.

At the moment, our UserGateway object could probably continue as it is with these
theo methods both containing their own versions of the SQL statement.

Consider, however, what would happen once we started to expand our requirements
by adding in more filter methods. If we continued to supply a SQL statement with
each function, we would not only be creating extra lines in our files that could lead
to something incredibly difficult or frustrating to navigate and debug, but more
importantly we would be unnecessarily duplicating the SQL statement and the
cfquery code.

As a rule of thumb, it's normally better to pre-empt this kind of problem and plan
ahead than to have to refactor your code later and amend your components
and objects.

And so, to avoid this situation, we can amend our Gateway object to contain only
one method that will handle all of our multi-record transactions, whether they need
a filter or not.

Gateways

[144]

Revising the gateway object
We will begin by re-writing our UserGateway.cfc to include the revised methods.
Essentially, we are stripping out every method with the exception of the init()
constructor method to revert back to the code as shown in Listing 6.2.

Let's once more take a look at the UML diagram for the revised UserGateway object.

We will be adding in three methods that will be publicly accessible outside of the
CFC, which are clearly visible in the UML diagram thanks to the plus sign (+)
prepending each method name.

The fourth method, filterAllUsers(), is a private function accessible only within
the component itself. It is this method that will contain the actual SQL statement
used by the three public functions, which will call this method to obtain the results
from the database.

Let's add the three public methods into our revised UserGateway object.

<!--- PUBLIC METHODS --->
<cffunction name="getAllUsers" access="public" output="false"
 hint="I run a query of all users within the database table.">
 <!---Call the query method and return the query object.--->
 <cfreturn filterAllUsers() />
</cffunction>

<cffunction name="filterByLastName" access="public" output="false"
 hint="I run a query of all users within the database table based
 upon a required filter.">
 <cfargument name="lastNameFilter" required="true" type="string"
 hint="I am the lastname to filter." />
 <!---Create and populate a structure object containing the filter
 to pass through.--->
 <cfset var stuFilter = {
 lastname = arguments.lastNameFilter
 } />

Chapter 6

[145]

 <!---Send the structure into the query method and return the
 query object.--->
 <cfreturn filterAllUsers(stuFilter) />
</cffunction>

<cffunction name="filterByEmailAddress" access="public"
 output="false" hint="I query the database to find a user
 with a matching email address.">
 <cfargument name="emailAddress" required="true" type="string"
 hint="I am the email address to search for." />
 <!---Create and populate a structure object containing the filter
 to pass through.--->
 <cfset var stuFilter = {
 emailAddress = arguments.emailAddress
 } />

 <!---Send the structure into the query method and return the
 query object.--->
 <cfreturn filterAllUsers(stuFilter) />
</cffunction>

Listing 6.8 – adding our filter methods to the Gateway object

The code in Listing 6.8 shows our three public methods within the Gateway object.
Each of these functions calls and directly returns the value of the private method,
filterAllUsers().

Two of our methods require a filter argument to amend the SQL statement, and so
we create a structure populated with the filter values from their arguments, which is
then passed into the filterAllUsers() method.

Let's now add the filterAllUsers() method, which contains our SQL statement.

<!--- PRIVATE METHODS --->
<cffunction name="filterAllUsers" access="private" output="false"
 hint="I run a query and will return all user records. If a filter
 has been supplied, I will refine the search using the filter
 information sent to me.">
 <cfargument name="filter" required="false" type="Struct"
 default="#structNew()#" hint="I am a structure used to filter
 the query." />
 <cfset var qSearch = '' />
 <cfquery name="qSearch"
 datasource="#variables.instance.datasource.getDSName()#"
 username="#variables.instance.datasource.getUsername()#"
 password="#variables.instance.datasource.getPassword()#">

Gateways

[146]

 SELECT ID, firstName, lastName, username, password,
 emailAddress
 FROM tbl_Users
 WHERE 1 = 1
 <cfif NOT structIsEmpty(arguments.filter)>
 <!---A filter has been provided. Let's find out which filter it
 is, and apply the necessary clause to the SQL.--->
 <!--- Perform a LIKE comparison on the lastname --->
 <cfif structKeyExists(arguments.filter, 'lastname')>
 AND lastname LIKE
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.filter.lastname#" />
 </cfif>
 <!--- Here, we want to find exact email address matches. --->
 <cfif structKeyExists(arguments.filter, 'emailAddress')>
 AND emailAddress =
 <cfqueryparam cfsqltype="cf_sql_varchar"
 value="#arguments.filter.emailAddress#" />
 </cfif>
 </cfif>
 </cfquery>
 <cfreturn qSearch />
</cffunction>

Listing 6.9 – adding the core query function to the Gateway object

The code in Listing 6.9 shows the primary database interaction method, which
contains the SQL statement to query the database.

This method accepts one parameter, which is a structure containing the filter string.
It is this structure value which is then used within the filterAllUsers() method to
determine if the SQL statement is amended with the extra filter information.

Although we have drastically amended the contents of the UserGateway object by
revising these methods, we have not changed the process of calling the query, and
so our existing code in Listings 6.5 and 6.7 would still work. The Gateway pattern
ensures that the access to the database was encapsulated and maintained without
affecting how the rest of the application functioned and called the methods.

We also went some way to tidy up the contents of the Gateway component to
streamline the amount of code involved.

Chapter 6

[147]

The larger the number of filter methods calling the primary SQL query you wished
to include within the Gateway object, the bigger and possibly more confusing the
cfif statement within the filterAllUsers() method may become. You may then
run the risk of making your code incredibly difficult or confusing to manage and
maintain.

In this instance, perhaps the Gateway would be better suited to contain a separate
SQL statement within each function. The choice and option is ultimately down to
you as a developer, what will work best for you and the application.

Caching the Gateway object
Incredibly similar in form, function, and purpose as Data Access Objects, Gateway
objects are also classed as a singleton object; it only needs to be created once and then
cached for use throughout the application.

We can alter the onApplicationStart() method in your Application.cfc to
include the following highlighted code:

<cffunction name="onApplicationStart" output="false">
 <!--- Instantiate the Datasource object. --->
 <cfset var objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<your dsn username>',
 password='<your dsn password>') />

 <!--- Instantiate the UserDAO object. --->
 <cfset var objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

 <!--- Instantiate the UserGateway object. --->
 <cfset var objUserGW = createObject('component',
 'com.packtApp.oop.dataAccess.UserGateway').init(
 datasource=objDataSource) />

 <!--- Store the UserDAO in the Application scope. --->
 <cfset Application.userDAO = objUserDAO />

 <!--- Store the UserGW in the Application scope. --->
 <cfset Application.userGW = objUserGW />
</cffunction>

Listing 6.10 – Caching the Gateway in the application scope

The UserGateway is now available on every page throughout the application as it is
stored and persisted within the Application scope.

Gateways

[148]

The Gateway discussion
There has been many a strong discussion on the implementation and understanding
of Gateways in ColdFusion applications over the years, and there still doesn't seem
to be any definitive answer or rule of thumb for the architecture and use of them in a
design pattern environment.

Most object-oriented design patterns incorporated into ColdFusion development
resemble common design patterns used in J2EE/Java.

We have already discussed Bean objects and Data Access Object in previous
chapters, both of which are commonly used in most object-oriented design patterns,
across any development language.

The Gateway, however, isn't necessarily a direct copy of the Java OO equivalent. In
fact, there seems to be a level of uncertainty over what it actually is.

No hard and fast rules
We have read earlier on in this chapter that a Gateway encapsulates access to an
external system or resource, and generally deals with items that are not objects, such
as database tables.

Furthermore, by separating the multi-record queries such as getAllUsers() from
the single-row queries or the CRUD methods, developers and SQL programmers
both have a simplified series of component packages and a firmer understanding of
where the methods reside in terms of the code base.

It is for this reason alone that the method of creating a Gateway shown so far in this
chapter has been inherited and used by the vast majority of ColdFusion developers
over the years.

There is an alternative method of creating and using Gateways inside the design
patterns, which stems from the Table Data Gateway.

Table Data Gateway
An object that acts as a Gateway to a database table. One instance handles all the
rows in the table.—Martin Fowler

We know that the definition of a Gateway is an object that has "access to an external
system or resource". In "Patterns of Enterprise Application Architecture", Martin Fowler
describes a Table Data Gateway as an object that acts as a Gateway to a
database table.

Chapter 6

[149]

This is an extension of sorts on his previous quote which outlines the fact that there
is an 'external resource'. With the new addition of the Table Data Gateway, that
external resource has been clarified as a database table.

This marries up nicely with the fact that the Gateway should encapsulate access to
the resource.

The definition of the Table Data Gateway continues to say the following:

A Table Data Gateway holds all the SQL for accessing a single table or view:
selects, inserts, updates, and deletes. Other code calls its methods for all
interaction with the database.

Similarities to Data Access Objects
As we know, Data Access Objects (DAOs) are used to encapsulate access to the
datasource, typically dealing with single-row data. However, given that OOP is
primarily a concept derived from Java/J2EE programming, an official note on the
usage of DAOs provided by Sun Microsystems when referencing the Core J2EE OO
Pattern is that the DAO is used to encapsulate all access to the datasource.

More information on the Core Data Access Object definition can be
found here:
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html.

This would suggest that a viable use of the DAO would be to control every aspect of
database access including all queries that deal with multiple results, and not just the
standard single-row CRUD methods (create, read, update, and delete).

The solution provided for DAO usability in this case sounds incredibly similar to the
typical usage of the Gateway object.

On a similar note, the comparison between the DAO and the Table Data Gateway are
incredibly close in terms of purpose, leading to an assumption that the Data Access
Object pattern and the Table Data Gateway pattern are theoretically one and
the same.

Both objects are designed to encapsulate access to a database table, and both seem to
have the definition of handling all access in single- or multi-record form.

The TDG pattern and the DAO pattern are able to deal with not only CRUD
methods, but also getAll_x() methods, such as the getAllUsers() function.

Gateways

[150]

Combining the two patterns
An alternative solution would be to combine the two patterns into one object. They
both perform the same basic function, and both have the core functionality of dealing
with all access to the database.

It would therefore be feasible to create a revised data object which contains all code
and methods relating to database access and querying.

There is no set rule on calling this object a Table Data Gateway pattern, either.
Personal preference and development practices will define what you feel most
comfortable calling an object such as this. You could create a Table Data Gateway
object, stay with either a Data Access object or Gateway object, or create your own
naming convention.

Whichever option you choose will work for you. In this instance, let's imagine we
have created a UserTDG.cfc object, which will include all of the methods from our
UserDAO and UserGateway objects.

As such, we could visualize the object by creating a UML diagram to represent its
structure, which would look something like this:

In this object, we have now combined the CRUD methods from our original Data
Access Object with the more general getAll_x() and filter_X() methods from
our Gateway.

We still have the init() method to instantiate the object, into which we pass the
reference to the datasource, as all functions within this object will be accessing the
database. Instantiation of the object would not differ from the example shown earlier,
and we now only have one object in which to call ANY database-related methods.

Chapter 6

[151]

Which option is best?
Having read this chapter and seen the similarities between the Gateway and Data
Access Objects in their elementary states, and having compared the underlying
definitions of each, the fundamental question you may be asking yourself is which
option should I use?

Why keep DAOs and Gateways as separate objects if the two seem so similar?

The common answer is that by separating the two objects, you have a way
of differentiating between the two forms of database interaction—single-row
manipulation, and multi-record retrieval. You know exactly what CFC file contains
which set of queries.

The suggestions and definitions outlined in this chapter all relate to Java-based
object-oriented programming. Should ColdFusion need to follow the exact patterns
and get rid of the separate Gateway object?

Typically, when writing Data Access Object patterns, the single-record SQL
statements tend not to change. It is a simple matter of managing one record through
the CRUD methods. They are fairly static, and once written need not be amended too
many times.

The Gateway methods containing possibly large and detailed SELECT statements
(depending on the structure of your relational database tables) may need to be
edited, amended, and tweaked fairly regularly as needs and requirements change.
This is possibly another reason to keep the methods separate. The Data Access
Object can manage its CRUD methods without much need for change, leaving
the independent Gateway CFC for the developer to amend without causing any
disruption to the other code.

Simply because design patterns are based upon those within the J2EE environment,
doesn't mean they must follow the structure and usage 'word for word'.

The rest of the code in this book, and the application samples it builds along the way,
uses the method stated at the start of the book—a separate Gateway and Data Access
Object component for each package. This is not to say that this is the best method
to use—it has simply been implemented this way to easily show the separation
between the two objects.

You have the option to use whichever method you feel best suits your applications,
and ultimately that you feel most comfortable with.

Gateways

[152]

Summary
In this chapter, we have discussed the use of Gateway patterns in an
object-oriented application.

We have gained a deeper understanding of the underlying definition of the Gateway,
and have looked in some detail to an alternative solution by merging all database
queries and functions into one Data Access Object pattern, or the Table Data
Gateway pattern.

Creating a Service Layer
Up to this point, our application consists of two packages, one for the projects
and another for the users. Both packages contain a Data Access Object, dealing
with single-row data transactions; a Gateway object, dealing with multiple-record
database transactions; and a Bean object, to contain and persist the informatioln
where required.

Beans are transient, due in large to the fact that they are typically persisted across the
entire application and can pass through all layers in the tiered architecture.

In this chapter, we will discover the power and abilities of service layers within our
application. A structured application built with service objects removes any major
issues with object dependency, meaning that, to an extent the objects instantiated
within your application are not dependent upon having the knowledge of the inner
workings of any other objects and what each one does, but instead they simply need
the ability to communicate with each other to perform the actions required.

We will alter our application to no longer create the Data Access Objects or Gateway
objects directly, instead choosing to use the Service Layer for direct method calls,
which in turn will communicate with the DAOs and Gateways to perform the
database enquiries.

We will also look into the following:

•	 Amending existing code to call the service layer
•	 Streamlining the CRUD and Gateway methods
•	 Object inheritance

Creating a Service Layer

[154]

What is a Service Layer?
A Service Layer is quite an easy object-oriented concept to understand.

Let's run a test scenario.

You're up late. You've been working for hours on end trying to complete some
urgent coding amendments that need to be delivered to a tight deadline. You're
tired, but my goodness the work is done. You're dedicated—what more can anyone
ask for. Be proud.

Just as you finish the final keystroke and save the work, your stomach rumbles. You
know what that means. It's time for some food, then off to bed to sleep for
an eternity.

Your stomach has told you what to do with the "sleepyStomachRumble()" method.
You just need to follow orders now, and you kick into auto-pilot.

First things first, time to shutdown the computer, using the "pcOff()" method. Slide
yourself off from your office chair using the "deskEscape()" function, and off to the
kitchen to prepare a few slices of toast; "breadIn()", "toasterOn()", and "spreadJam()"
methods respectively.

After savoring your hard-earned slices of toast, it's time to turn off the lights and
head to bed; "lightsOff()", "quickShower()", and "sleepLikeALog()" methods.

Mission accomplished.

A slightly bizarre situation, I grant you, but in this particular situation you are acting
as a Service Layer.

You had the "sleepyStomachRumble()" method pre-built into your psyche—hours of
late night development will do that to you—but that one method was coordinating
other objects and their contained methods to complete the process to take you away
from the desk and into the kitchen for food before whisking you away for a good
night's sleep.

In essence, one method was called, an easily memorable method name, but
underneath that single method runs a series of other functions to complete the task.
No one needs to be exposed to the intricacies or the details. All that needs to be run is
the "sleepyStomachRumble()" method.

A Service Layer forms a basic Facade Pattern for the application, and a simple
interface to interact with the code base.

Chapter 7

[155]

Facade patterns in a nutshell
A Facade Pattern is a type of design pattern commonly used in object-oriented
programming. The word 'facade' stems from the French language, and literally
means 'frontage' or 'face', and a facade pattern is an object that provides a simplified
interface to a larger body of code, such as a Class package or library.

A facade can:

•	 Make a component library or group of packages easier to use and
understand, since the facade has convenient methods for common tasks

•	 Make code that uses the library more readable, for the same reason
•	 Reduce dependencies of outside code on the inner workings of a library,

since most code uses the facade, thereby allowing more flexibility in
developing the system

•	 Wrap a collection of APIs with a single well-designed API

Creating a service
A major benefit to creating a service layer is the fact that it creates a simpler,
easier interface to interact with and access the data through the larger collection of
packages and Class libraries within your code base.

The service layer can also manage the instantiation of related objects.

To highlight the effectiveness of using a Service layer (or Facade Pattern) in your
larger applications, the code used in this chapter has grown. We now have not only
a component package dealing with User interactions (the Bean, DAO, and Gateway),
we also have a package dealing with the user's address, which is available in the
complete code download for this chapter.

Let's take a look at the onApplicatonStart() method as it currently stands within
the Application.cfc file.

<cffunction name="onApplicationStart" output="false">
 <!--- Instantiate the Datasource object. --->
 <cfset var objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='<your dsn username>',
 password='<your dsn password>') />
 <!--- Instantiate the UserDAO object. --->
 <cfset var objUserDAO = createObject('component',
 'com.packtApp.oop.dataAccess.UserDAO').init(
 datasource=objDataSource) />

Creating a Service Layer

[156]

 <!--- Instantiate the UserGateway object. --->
 <cfset var objUserGW = createObject('component',
 'com.packtApp.oop.dataAccess.UserGateway').init(
 datasource=objDataSource) />
 <!--- Store the UserDAO in the Application scope. --->
 <cfset Application.userDAO = objUserDAO />
 <!--- Store the UserGW in the Application scope. --->
 <cfset Application.userGW = objUserGW />
 <!--- Instantiate the AddressDAO object. --->
 <cfset var objAddressDAO = createObject('component',
 'com.packtApp.oop.dataAccess.AddressDAO').init(
 datasource=objDataSource) />
 <!--- Instantiate the AddressGateway object. --->
 <cfset var objAddressGW = createObject('component',
 'com.packtApp.oop.dataAccess.AddressGateway').init(
 datasource=objDataSource) />
 <!--- Store the addressDAO in the Application scope. --->
 <cfset Application.addressDAO = objAddressDAO />
 <!--- Store the addressGW in the Application scope. --->
 <cfset Application.addressGW = objAddressGW />
</cffunction>

Listing 7.1 - Application.cfc (before services)

Looking at the code in Listing 7.1, there are currently four objects being instantiated
and added to the Application scope for persistence throughout the application.

All of these objects are directly related to the two packages we have within the
code base; the User's package and the Address package respectively, and from each
package we are accessing the Gateway and the Data Access Object.

Let's visualize these objects in another UML diagram, being instantiated from the
Application.cfc file.

Chapter 7

[157]

Although this is entirely feasible, we can and should streamline the instantiation
of the objects as their dependencies dictate. This will help reduce any 'clutter' from
the onApplicationStart() method, and will also help to improve the solidity and
structure of our application's underlying model framework.

We will start to enhance our application's code structure even more by creating a
Service Layer component for each of the packages.

Defining the User Service
The main purpose of the User Service object is to be a single point of entry for
anything that requires access to user functionality, whether it's a Controller, a
standard .cfm template page, or a Web Services call.

A service object is no different in terms of basic layout and structure from any of the
other ColdFusion components we have written and discussed so far within
this book.

Listing 7.2 shows the bare bones structure of the CFC, complete with the
init() method used for the instantiation of the object. Create a new file called
UserService.cfc within the com/packtApp/oop/dataAccess directory within your
application, and add the following code to the file:

<cfcomponent displayname="UserService" output="false"
 hint="I am the UserSVC Class used to interact with the
 User package.">

 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 userDAO = '',
 userGW	 = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for
 the UserSVC Class.">
 <cfargument name="datasource" required="true"
 type="com.packtApp.oop.beans.Datasource"
 hint="I am the datasource object." />

 <!--- Set the initial values of the Bean --->
 <cfscript>
 // instantiate the Data Access Object
 variables.instance.userDAO = createObject(
 'component', 'UserDAO').init(arguments.datasource);
 // instantiate the Gateway

Creating a Service Layer

[158]

 variables.instance.userGW = createObject(
 'component', 'UserGateway').init(arguments.datasource);
 </cfscript>
 <cfreturn this />
 </cffunction>
 <!--- CRUD METHODS --->
 <!--- GATEWAY METHODS --->
</cfcomponent>

Listing 7.2 – UserService.cfc

The main purpose of the user service layer is to provide a simpler interface for the
developer/client to interact with the detailed packages already developed. The User
package needs to access, store, and retrieve information from the database, which is
why the Data Access Objects and Gateway components were developed.

Although this works amazingly well, not all of the methods they contain need to
be made available for 'public consumption'. For example, we don't need to expose
all of the save(), exists(), or filterBy_X() methods. The packages know what
methods need to be run when a certain function has been called—the next thing we
can do is to simplify the way they are being called.

As we need access to the User DAO and Gateway components, we have included
their instantiation within the init() method in the User Services layer, passing
through the datasource object from the arguments scope as it is a required parameter
in both the DAO and Gateway. We are then assigning both of the new objects to an
expression within the variables.instance structure within the CFC.

The DAO and Gateway objects have been stored within the service component for
use throughout the Users package. Although they are two separate objects each
containing their own methods and functions, as we have merged them into the
service component, all of those methods are available for us to use as though they are
part of the original component.

Adding the CRUD methods
The first object instantiated in the init() method of the UserService component is
the UserDAO component.

This object, as you will hopefully remember, was developed to deal with the single-
row database access. The four main methods within this object dealt with the CRUD
transactions; Create, Read, Update, and Delete.

Chapter 7

[159]

We also created two other functions called save() and exists(). The save()
method was written as a single entry method that would handle the creation of a
new record, or the update of an existing database record by calling the exists()
method to check if the ID value already existed in the database. If so, an update was
performed on that row of data, if not, a new record was inserted into the database.

At this stage in development, we had already helped to streamline code and
optimize the function calls by providing the ability to run one of the two database
functions by only calling one method, the save() method.

Although the DAO contains six methods in total (not including the init()
constructor method), we need to reference only three of them within the service layer
for the users package, as it is only these three that need to be publicly accessible.

Let's add the following three functions shown in Listing 7.3 to the UserService.cfc
file to add more functionality to our user package API.

<!--- CRUD METHODS --->
<cffunction name="save" access="public" output="false"
 hint="I save or update a User into the database.">
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User bean." />
 <cfreturn variables.instance.userDAO.saveUser(arguments.user) />
</cffunction>
<cffunction name="read" access="public" output="false"
 hint="I obtain details for a specific User from the database.">
 <cfargument name="userID" required="true" type="numeric"
 hint="I am the ID of the user you wish to search for." />
 <cfreturn variables.instance.userDAO.getUserByID(arguments.userID)
 />
</cffunction>
<cffunction name="delete" access="public" output="false"
 hint="I delete a specific User the database.">
 <cfargument name="userID" required="true" type="String"
 hint="I am the ID of the user you wish to delete." />
 <cfreturn
 variables.instance.userDAO.deleteUserByID(arguments.userID)/>
</cffunction>

Listing 7.3 - UserService.cfc (CRUD method callers)

Our three methods, save(), read(), and delete() have now been placed inside the
service component.

Creating a Service Layer

[160]

All of the SQL and database transactions have already been written within the
DAO itself. We do not want to duplicate any code—we have no requirement to.
As the DAO has been stored within the service component, we simply need to call
the relevant function within the object to run its method, variables.instance.
userDao.save() for example.

Listing 7.4 shows a clearer breakdown of the save() method from the projects
service layer:

<cffunction name="save" access="public" output="false"
 hint="I save or update a User into the database.">
 <!--- send in the required user object --->
 <cfargument name="user" required="true"
 type="com.packtApp.oop.beans.User" hint="I am the User bean." />
 <!--- call the save() method within the userDAO --->
 <cfreturn variables.instance.userDAO.saveUser(arguments.user) />
</cffunction>

Listing 7.4 – breakdown of the save() method

Adding the Gateway methods
In the same way we have added the functions from the User package Data Access
Object, we now need to add the functions from the Gateway object, as show in
Listing 7.5.

<!--- GATEWAY METHODS --->
<cffunction name="getAllUsers" access="public" output="false"
 hint="I run a query of all users within the database table.">

<!--- Call the query method from the User Gateway and return the
 query object. --->
 <cfreturn variables.instance.userGW.filterAllUsers() />
</cffunction>
<cffunction name="filterByLastName" access="public" output="false"
 hint="I run a query of all users within the database
 table based upon a required filter.">
 <cfargument name="lastNameFilter" required="true" type="string"
 hint="I am the lastname to filter." />

 <!--- Create and populate a structure object containing the filter
 to pass through. --->
 <cfset var stuFilter = {
 lastname = arguments.lastNameFilter
 } />

Chapter 7

[161]

 <!--- Send the structure into the query method and
 return the query object. --->
 <cfreturn variables.instance.userGW.filterAllUsers(stuFilter) />
</cffunction>
<cffunction name="filterByEmailAddress" access="public"
 output="false" hint="I query the database to find a user
 with a matching email address.">
 <cfargument name="emailAddress" required="true" type="string"
 hint="I am the email address to search for." />

 <!--- Create and populate a structure object containing the filter
 to pass through. --->
 <cfset var stuFilter = {
 emailAddress = arguments.emailAddress
 } />

 <!--- Send the structure into the query method and
 return the query object. --->
 <cfreturn variables.instance.userGW.filterAllUsers(stuFilter) />
</cffunction>

Listing 7.5 - UserService.cfc (Gateway method callers)

Again, the methods are in place, but no SQL or database transactions are in sight. We
have already written those, and have no desire to write them again. We want to keep
all database calls and SQL statements locked to the DAO and Gateway objects only.
This way, we only have the two files in which to change the relevant SQL if required.

The purpose of the service layer is to provide a simple interface to call the previously
developed and detailed methods.

As in the previous example, once a function is called within the UserService
component, the relevant method is called from the User Gateway object:

<cffunction name="getAllUsers" access="public" output="false"
 hint="I run a query of all users within the database table.">
 <!--- Call the query method from the User Gateway and return the
 query object. --->
 <cfreturn variables.instance.userGW.filterAllUsers() />
</cffunction>

Listing 7.6 – breakdown of the filterByParent() method

Creating a Service Layer

[162]

Adding an abstract class
We can further extend the functions available within the UserService object by
adding a base class to the component to aid in code reuse.

We have the coreUtils.cfc component (com/packtApp/oop/utils/coreUtils.
cfc), which we can use to contain generic methods and functions that we can share
across all of our components if necessary. Let's add a new function to this abstract
class, which will allow us to view the values of the variables.instance structure
within the object we call it from:

<cfcomponent displayname="coreUtils" output="false"
 hint="I am the coreUtils abstract Class.">
 <cffunction name="getMemento" access="public" output="false"
 hint="I return the variables.instance struct.">
 <cfreturn variables.instance />
 </cffunction>
</cfcomponent>

Listing 7.7 – com/utils/core.cfc (adding getMemento() method)

To complete this step, we next need to amend the UserService component and add
the extends="" attribute to point to the coreUtils.cfc abstract class:

<cfcomponent displayname="UserSVC" output="false"
 hint="I am the UserSVC Class used to interact with the
 User package." extends="com.packtApp.oop.utils.coreUtils">

Listing 7.8 - UserService.cfc (adding the extends attribute)

In Listing 7.8, we have added the path to the coreUtils.cfc file in the extends
attribute within the cfcomponent tag.

<cfdump var="#Application.userSVC.getMemento()#" />

Listing 7.9 – calling the getMemento() function

The following screenshot shows the dumped values of the code in Listing 7.9, which
returns the variables.instance structure within the User Service object:

Chapter 7

[163]

The following UML diagram shows the UserService object and the inheritance
connection with the coreUtils component.

Defining the address service
Let's repeat the process for the second of our packages used within the application,
the user package.

Create a new file called AddressService.cfc within the com/packtApp/oop/
dataAccess directory within your application, and add the following code to the file:

<cfcomponent displayname="AddressSVC" output="false"
 hint="I am the AddressSVC Class used to interact
 with the Address package.">

 <!--- Pseudo-constructor --->
 <cfset variables.instance = {
 addressDAO = '',
 addressGW = ''
 } />
 <cffunction name="init" access="public" output="false"
 returntype="any" hint="I am the constructor method for
 the AddressSVC Class.">
 <cfargument name="datasource" required="true"
 type="com.packtApp.oop.beans.Datasource" hint="I am the
 datasource object." />
 <!--- Set the initial values of the Bean --->
 <cfscript>
 // instantiate the Data Access Object
 variables.instance.addressDAO = createObject(
 'component', 'AddressDAO').init(arguments.datasource);
 // instantiate the Gateway
 variables.instance.addressGW = createObject(
 'component', 'AddressGateway').init(arguments.datasource);

Creating a Service Layer

[164]

 </cfscript>
 <cfreturn this />
 </cffunction>
 <!--- CRUD METHODS --->
 <!--- GATEWAY METHODS --->
</cfcomponent>

Listing 7.10 – com/packtApp/oop/dataAccess/AddressService.cfc

As in the previous example, we first define the basic structure for the ColdFusion
component, and add the constructor method to instantiate the object. We also send
through the datasource name as a required parameter, and create the user package
Data Access Object and Gateway object, again storing them in the variables.
instance structure within the service layer.

Notice in Listing 7.10, we have already defined the path to the coreUtils.cfc
within the extends attribute, thereby inheriting the functions from the abstract class
for use within this object.

We next need to add the DAO methods into the service object to interact with the
functions in the users Data Access Object.

<cffunction name="save" access="public" output="false"
 hint="I save or update an Address into the database.">
 <cfargument name="address" required="true"
 type="com.packtApp.oop.beans.Address"
 hint="I am the Address bean." />
 <cfreturn
 variables.instance.addressDAO.saveAddress(arguments.address) />
</cffunction>
<cffunction name="read" access="public" output="false"
 hint="I obtain details for a specific address from the database.">
 <cfargument name="ID" required="true" type="numeric"
 hint="I am the ID of the address you wish to search for." />
 <cfreturn
 variables.instance.addressDAO.getAddressByID(arguments.ID) />
</cffunction>
<cffunction name="delete" access="public" output="false"
 hint="I delete a specific Address the database.">
 <cfargument name="ID" required="true" type="String"
 hint="I am the ID of the address you wish to delete." />
 <cfreturn
 variables.instance.addressDAO.deleteAddressByID(arguments.ID) />
</cffunction>

Listing 7.11 – AddressService.cfc (CRUD method callers)

Chapter 7

[165]

Finally, we need to add the Gateway method callers into the AddressService
component to interact with the Gateway object and run the multiple record data
transactions against the database, as in Listing 7.12.

<!--- GATEWAY METHODS --->	
<cffunction name="getAllAddresses" access="public" output="false"
 hint="I run a query of all users within the database table.">

<!--- Call the query method and return the query object. --->
 <cfreturn variables.instance.addressGW.getAllAddresses() />
</cffunction>
<cffunction name="filterByUserID" access="public" output="false"
 hint="I run a query of all addresses within the database
 table based upon a required filter.">
 <cfargument name="userID" required="true" type="string"
 hint="I am the userID to filter." />

 <!--- Create and populate a structure object containing the
 filter to pass through. --->
 <cfset var stuFilter = {
 userID = arguments.userID
 } />
 <!--- Send the structure into the query method and
 return the query object. --->
 <cfreturn
 variables.instance.addressGW.filterAllAddresses(stuFilter) />
</cffunction>

Listing 7.12 – AddressService.cfc (Gateway method callers)

With the addition of the code in Listings 7.11 and 7.12 added to the basic structure for
the AddressService.cfc, your service layer for the address packages is complete.

Creating a Service Layer

[166]

onApplicationStart (revisited)
Now that we have written our service layer objects, which interact with the
DAO and Gateway for each package on our behalf, we can now amend the
onApplicationStart() method within the Application.cfc file to build our objects.

From the four objects we were creating at the beginning of this chapter, we have
streamlined the process and are now instantiating just two objects within the
onApplicationStart() method; the User and Address service layers respectively.

Not only do these files provide a cleaner, simpler API with which to deal with the
underlying code, but this also streamlines the process in which we create the objects.
The Gateway and DAO, for each package, are now created within the init()
method of each service object.

<cffunction name="onApplicationStart" output="false">

 <!--- Instantiate the Datasource object. --->
 <cfset var objDatasource = createObject('component',
 'com.packtApp.oop.beans.Datasource').init(
 DSName='CFOOP', username='< your datasource username >',
 password='< your datasource password >') />

 <!--- Instantiate and persist the User Service in the
 application scope.--->
 <cfset Application.userSVC = createObject('component',
 'com.packtApp.oop.dataAccess.UserService').init(
 datasource = objDatasource) />

 <!--- Instantiate and persist the Address Service in the
 application scope.--->
 <cfset Application.addressSVC = createObject('component',
 'com.packtApp.oop.dataAccess.AddressService').init(
 datasource = objDatasource) />
</cffunction>

Listing 7.13 - Application.cfc (after services)

Now that we have amended the Application.cfc component to instantiate the two
Service objects instead of the four data-related objects, our revised UML diagram
would look a little like this:

Chapter 7

[167]

As we can see from the diagram, the Application.cfc merely needs to instantiate
the service layers/facade objects, which in turn will create the required objects to
access the underlying information from the data providers.

Summary
A Service Layer is responsible for providing simple and elegant access to application-
specific business logic, data access functions, and methods contained in the Data
Access Objects and Gateways, and can be used for creating the package Beans.

By calling these sometimes large, complicated methods through the facade pattern of
the Service Layer, a simplified interface to the larger underlying code base is made
available, providing quick, clean access to the 'important' functions that are required
for application development.

This method of application architecture, however basic, will help to reduce the
amount of time required to further enhance your application, and will help to ensure
that any business-critical logic or SQL statements are kept safe and away from view,
only being accessed by the Service Layer and its methods.

Other topics we have covered in this chapter are:

•	 streamlining the API
•	 extending a base class
•	 further code inheritance

Index
A
access attribute

about 46
package access option 47
private access option 46
public access option 47
remote option 47

accessors 67, 68
accessors attribute 82, 83
address service

defining 163-165
onApplicationStart() method, using 166,

167
revised UML diagram 166

aggregation
about 103
example 103-105
simple Driver object, creating 105-107

API 136
Application Programming Interface. See

API
arguments

cfargument, using for method combination
27-29

functions, merging 26, 27
passing, into instance method call 25

arguments, passing into instance method
call

as argumentCollection 26
as list 25
as named values 26

B
baseNumber() function 19
baseNumber() method 22, 47
Bean

about 59-62
benefits 62, 63
comparing, with ColdFusion component 66
creating 63
default/no-argument constructor 66
entity structure, populating 61
introspection, easy access 67
populating 73
projects Bean, calling 72, 73
projects Bean, completing 68-71

Bean, creating
UML 63

Bean, populating 74
Read-only Bean 76, 77
Read/Write Beans 74, 75

C
CFC

accessing 22
advantages 8
benefit 57
code documentation 50
component 7
component, creating 10
components, organizing 9, 10
functions, grouping 9
introspection 48

[170]

loading 9
metadata, obtaining 52
methods 7
need for 8
structure 7, 8
tags 10
uses 8

CFC, accessing
cfinvoke, using 23
object, instantiating 22
ways 22, 23

cffunction returnType attribute
any value 45
array value 45
boolean value 45
numeric value 45
query value 45
string value 45
struct value 45
void value 45
xml value 45

cfinvoke, CFC
argument collection, using 25
attributes, using as arguments 24, 25
cfinvokeargument, using 24
cfinvoke tag 24
using 23

class 10
code documentation

about 50
benefits 50
description attribute 51
displayname attribute 50
hint attribute 50, 51
user-defined metadata 51, 52

code duplication, minimizing
about 143
Gateway object, caching 147
gateway object, revising 144-146

ColdFusion
values, returning 42
variables, returning 42

ColdFusion Gateway
code duplication, minimizing 143
creating 136-138
methods, adding 140-142
naming conventions 138, 139

object, creating 138
qListUsers query 138

component, creating
data, ColdFusion 9 scripted components 12
data, returning 11
method, defining 11
object, creating 12
steps 10

composition
about 100
example 100
HAS A relationship 101-103
implied ownership 103
UML diagram 100

createNewuser() method
about 116-118
new user, storing 118-120

createObject() function 12, 22, 37
createObject() method 102
Create, Read, Update, and Delete. See

CRUD
CRUD 112

D
DAO

about 111
caching 132
combining, with Table Gateway 150
creating 112
CRUD method 112
similarities, with Table Data Gateway 149
tasks 112

DAO, creating
about 112-116
createNewuser() method 116
delete method 128
exists() method 129
methods 113
read method 121
saveUser() method 129
update method 123

Data Access Object. See DAO
dateFormat() function 39
dateofbirth variable 78
delete() method 159
deleteUserByID() method 129

[171]

Dependency Injection. See DI
DI

about 116, 133
displaying 133

E
exists() method 130, 131

F
filterAllUsers() method 144
filterbyLastName() method 143
filterByParent() method 161
filterBy_X() method 158
filter_X() method 150
function restricting, to scope

about 13
Arguments scope 14
argument, using 14
function parameters, redefining 15, 16
methods, combining 16, 17

G
Gateway

about 135, 136, 148
ColdFusion Gateway 136
options, choosing 151
Table Data Gateway 149

getAllUsers() function 149
getAll_x() method 150
getComponentMetaData() function 54, 55
getCurrentDate() method 38
getFullName() function 113
getID() method 131
getLastName() 78-80
getLastName() method 78-80
getMemento() function 162
getMemento() method 72
getMetaData() function 52
getMetaData() method 55
getName() function 14
getName() method 17, 100
getters 67, 68
getUserByID() method 121

H
HAS A relationship, composition

about 101-103
implied ownership 103

hasDriver() method 107

I
implicit accessors

using, in Person.cfc 83, 84
inheritance

about 87
book, UML diagram 88
code duplication, avoiding 90
DVD object, UML diagram 89
example 88
hierarchy 98
Product Base class, inheriting 93
products, inheriting 91-95
products, instantiating 96, 97
super keyword, using 95
UML diagram 91, 92

inheritance hierarchy
about 98
IS A relationship 99
specialization 98, 99

init() method. See pseudo-constructor
introspection

about 48
CFC Explorer 48, 49
Component Doc 49

Inversion of Control. See IoC
IoC 133

K
keyword

super keyword 95
Var keyword, using 20

L
local variables

protecting 17-19
Var scope, using 20, 21

[172]

M
metadata, CFC

getComponentMetaData() function 54, 55
getMetaData() function 52, 53
obtaining 52
returning 55, 56

method
baseNumber() 22, 46
createNewUser() 113
createObject() 102
deleteUser() 113
deleteUserByID() 129
exists() 130, 131
filterAllUsers() 144
filterbyLastName() 143
filterByParent() 161
getAllUsers() 140
getCurrentDate() 38
getMemento() 72
getMetaData() function 55
getName() 17, 100
getUserByID() 113, 121
hasDriver() 107
nit() 37
multiplyNumbers() 46
onApplicationStart() 132, 166
personalGreeting() 17
saveUser() 129
sayHello() 16
updateUser() 113, 129

Model View Controller. See MVC
multiplyNumbers() function 19
multiplyNumbers() method 46
mutators 67
MVC 8

N
NEW operator 23

O
object constructor, creating

about 29, 30
init() function, calling 32
init() function, creating 30, 31
This scope 32-34

Variables scope 31
object instantiation, CFC

cfobject tag, using 23
createObject function, using 22, 23
methods 22
NEW operator, using 23

object-oriented programming
aggregation 103
composition 100
inheritance 87
polymorphism 99

onApplicationStart() method 132, 147, 166
OOP design pattern. See Bean
output attribute 40

P
personalGreeting() function 26
personalGreeting() method 16, 17
Person.cfc UML diagram

viewing 84
polymorphism

about 99
example 100

pseudo-constructor
about 38
output attribute 40, 41
whitespace, suppressing 39
using, in example 38, 39

Q
qListUsers, ColdFusion Gateway 138
query functions

adding, into UserGateway Object 140-142

R
read method

select results, handling 122, 123
read() method 159
returnType attribute

using 42-44

S
save() method 159
saveUser() method 129, 130

[173]

sayHello() method 16
Service Layer

about 154
creating 155-157
facade pattern 155

Service Layer, creating
abstract class, adding 162
User Service, defining 157

setters 67
sleepyStomachRumble() method 154
subclasses 90
super-component 90
super keyword, inheritance

methods, overriding 95, 96
using 95

T
Table Data Gateway

about 149
combining, with DAO 150
similarities, with DAO 149

tags, CFC
cfargument 10
cfcomponent 10
cffunction 10
cfproperty 10

U
UDF 9
UML

about 63
person object 64
structure 64, 66

Unified Modeling Language. See UML
updateUser() method 123-129
User-Defined Function. See UDF
User Service, defining

about 157, 158
CRUD methods, adding 158-160
Gateway methods, adding 160, 161
purpose 157

V
Var scope, using

variables, naming 21, 22
variables, placing 21

X
xml value, cffunction returnType attribute

45

Thank you for buying
Object-Oriented Programming in ColdFusion

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

ColdFusion 9 Developer Tutorial
ISBN: 978-1-849690-24-9 Paperback: 388 pages

Create robust professional web applications with
ColdFusion

1.	 Fast-paced guide to the foundational concepts
of developing in ColdFusion

2.	 Broad coverage of CFScript to deal with its
expanded power in ColdFusion 9

3.	 Enhance the user interface with built-in
ColdFusion AJAX features (layout, forms, script,
maps, and more)

4.	 Packed with example code and real-world
knowledge

ColdFusion 8 Developer Tutorial
ISBN: 978-1-847194-12-1 Paperback: 400 pages

An intense guide to creating professional ColdFusion
web applications: get up to speed in ColdFusion
and learn how to integrate with other web 2.0
technologies

1.	 Fast-paced guide to important ColdFusion
development topics

2.	 Packed with example code and real-world
knowledge

3.	 Coverage of using AJAX in ColdFusion

4.	 Also covers ColdFusion 8 Update 1

Please check www.PacktPub.com for information on our titles

Python 3 Object Oriented
Programming
ISBN: 978-1-849511-26-1 Paperback: 404 pages

Harness the power of Python 3 objects

1.	 Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial

2.	 Design public interfaces using abstraction,
encapsulation, and information hiding

3.	 Turn your designs into working software by
studying the Python syntax

4.	 Raise, handle, define, and manipulate exceptions
using special error objects

C# 2008 and 2005 Threaded
Programming: Beginner's Guide
ISBN: 978-1-847197-10-8 Paperback: 416 pages

Exploit the power of multiple processors for faster,
more responsive software

1.	 Develop applications that run several tasks
simultaneously to achieve greater performance,
scalability, and responsiveness in your
applications

2.	 Build and run well-designed and scalable
applications with C# parallel programming.

3.	 In-depth practical approach to help you
become better and faster at managing different
processes and threads

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Introducing ColdFusion Components
	Why use CFCs?
	Grouping your functions
	Organizing your components

	The ColdFusion component tags
	Our first component
	Defining a method
	Returning the data
	ColdFusion 9 scripted components

	Creating your object

	Restricting your functions to scopes
	Using arguments within your methods
	The Arguments scope
	Redefine the function parameters
	Combining your methods

	Protecting your local variables
	Using the Var scope
	Placing your Var scoped variables
	Naming your Var scoped variables

	Accessing your CFC
	Instantiating the object
	Using the createObject function
	Using the cfobject tag
	Using the NEW operator

	Using cfinvoke
	The cfinvoke tag
	Using cfinvokeargument
	Using attributes as arguments
	Using an argument collection

	Passing arguments into an instance method call
	As a list
	As named values
	As an argumentCollection

	Arguments in action
	Merging your functions into one
	Using cfargument to combine your methods

	Creating an object constructor
	Creating an init() function
	The Variables scope
	Calling your init() function
	The This scope

	Summary

	Chapter 2: Effective Component Development
	Pseudo-constructors
	Using the pseudo method
	Suppressing whitespace
	Output attribute

	Pseudo-constructor or init() method

	Returning values and variables
	returnType

	Access properties
	Private
	Package
	Public
	Remote

	Getting information about your CFC
	Introspection
	CFC Explorer
	Component Doc

	Document your code
	Benefits of documentation
	Displayname attribute
	Hint attribute
	Description attribute
	User-defined metadata

	Obtaining CFC metadata
	getMetaData
	getComponentMetaData
	Returning metadata

	Detailed introspection
	Summary

	Chapter 3: Building Your First Bean
	What is a Bean?
	But what is it really?

	The benefit of using beans
	Creating our first Bean
	An introduction to UML
	Person object in UML

	What makes a Bean a Bean
	A default/no-argument constructor
	Easily accessible for introspection

	Completing our Projects Bean
	Calling our project Bean

	Populating the Bean
	Read/Write Bean
	Read-only Bean

	Helpful objects
	Implicit accessors
	Summary

	Chapter 4: Inheritance and Object-Oriented Concepts
	What is Inheritance?
	Avoiding code duplication
	Inheriting our products
	The Super keyword
	Overriding methods

	Instantiating our products

	The inheritance hierarchy
	Specialization
	The "IS A" relationship

	Polymorphism
	Composition
	The "HAS A" Relationship
	Implied ownership

	Aggregation
	Summary

	Chapter 5: Data Access Objects
	What is a Data Access Object?
	Creating a Data Access Object
	The create method
	Storing a new user

	The read method
	Handling select results

	The update method
	The delete method
	An alternative save method
	The save method
	The exists method
	Caching the Data Access Objects

	Dependency Injection
	Summary

	Chapter 6: Gateways
	What is a Gateway?
	A typical ColdFusion Gateway
	Creating a Gateway object
	Naming conventions

	Adding gateway methods
	Minimising code duplication
	Revising the gateway object
	Caching the Gateway object

	The Gateway discussion
	No hard and fast rules
	Table Data Gateway
	Similarities to Data Access Objects
	Combining the two patterns

	Which option is best?

	Summary

	Chapter 7: Creating a Service Layer
	What is a Service Layer?
	Facade patterns in a nutshell

	Creating a service
	Defining the User Service
	Adding the CRUD methods
	Adding the Gateway methods

	Adding an abstract class

	Defining the address service
	onApplicationStart (revisited)

	Summary

	Index

